Skip to main content
Log in

Synthesis of monodispersed Fe3O4@C core/shell nanoparticles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report a facile method to synthesize dispersed Fe3O4@C nanoparticles (NPs). Fe3O4 NPs were firstly prepared via the high temperature diol thermal decomposition method. Fe3O4@C NPs were fabricated using glucose as a carbon source by hydrothermal process. The obtained products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Raman spectra. The results indicate that the original shapes and magnetic property of Fe3O4 NPs can be well preserved. The magnetic particles are well dispersed in the carbon matrix. This strategy would provide an efficient approach for existing applications in Li-ion batteries and drug delivery. Meanwhile, it offers the raw materials to assemble future functional nanometer and micrometer superstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu JW, Xu JJ, Liu ZW, Liu XL, Che RC. Sci China Chem, 2014; 57: 3–12

    Article  CAS  Google Scholar 

  2. Wu CL, He H, Gao HJ, Liu G, Ma RJ, An YL, Shi LQ. Sci China Chem, 2010; 53: 514–518

    Article  CAS  Google Scholar 

  3. He QL, Yuan TT, Yan XR, Luo ZP, Haldolaarachchige N, Young DP, Wei SY, Guo ZH. Chem Commun, 2014; 50: 201–203

    Article  CAS  Google Scholar 

  4. Liu J, Qiao SZ, Hu QH, Lu GQ. Small, 2011; 7: 425–443

    Article  CAS  Google Scholar 

  5. Kaushika A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD. Biosens Bioelectron, 2008; 24: 676–683

    Article  Google Scholar 

  6. Bystrzejewski M. Solid J State Chem, 2011; 184: 1492–1498

    Article  CAS  Google Scholar 

  7. Wei XW, Zhu GX, Xia CJ, Ye Y. Nanotechnology, 2006; 17: 4307–4311

    Article  CAS  Google Scholar 

  8. Tsang SC, Caps V, Paraskevas I, Chadwick D, Thompsett D. Angew Chem Int Ed, 2004; 43: 5645–5649

    Article  CAS  Google Scholar 

  9. Zhang D, Wei SY, Kaila C, Su X, Wu J, Karki AB, Young DP, Guo ZH. Nanoscale, 2010; 2: 917–919

    Article  CAS  Google Scholar 

  10. Chan HBS, Ellis BL, Sharma HL, Frost W, Caps V, Shields RA, Tsang SC. Adv Mater, 2004; 16: 144–149

    Article  CAS  Google Scholar 

  11. Yoon H, Ko S, Jang J. Chem Commun, 2007: 1468–1470

    Google Scholar 

  12. Dumitrache F, Morjan I, Alexandrescu R, Morjan RE, Voicu I, Sandu I, Soare I, Ploscaru M, Fleaca C, Ciupina V, Prodan G, Rand B, Brydson R, Woodword A. Diam Relat Mater, 2004; 13: 362–370

    Article  CAS  Google Scholar 

  13. Wang ZF, Mao PF, He NY. Carbon, 2006; 44: 3277–3284

    Article  CAS  Google Scholar 

  14. Xuan SH, Hao LY, Jiang WQ, Gong XL, Hu Y, Chen ZY. Nanotechnology, 2007, 18: 035602

    Article  Google Scholar 

  15. Wang H, Sun YB, Chen QW, Yu YF, Cheng K. Dalton Trans, 2010; 39: 9565–9569

    Article  CAS  Google Scholar 

  16. Du YC, Liu WW, Qiang R, Wang Y, Han XJ, Ma J, Xu P. ACS Appl Mat Interf, 2014, 6: 12997–13006

    Article  CAS  Google Scholar 

  17. Wu Z, Li W, Webley PA, Zhao D. Adv Mater, 2012; 24: 485–491

    Article  CAS  Google Scholar 

  18. Wang GZ, Gao Z, Tang SW, Chen CQ, Duan FF, Zhao SC, Lin SW, Feng YH, Zhou L, Qin Y. ACS Nano, 2012, 6: 11009–11017

    Article  CAS  Google Scholar 

  19. Wu Y, Wei Y, Wang JP, Jiang KL, Fan SS. Nano Lett, 2013; 13: 818–823

    Article  CAS  Google Scholar 

  20. Hua CC, Zakaria S, Farahiyan R, Khong LT, Nguyen KL, Abdullah M, Ahmad S. Sains Malays, 2008; 37: 389–394

    CAS  Google Scholar 

  21. Cannas C, Ardu A, Musinu A, Peddis D, Piccaluga G. Chem Mat, 2008; 20: 6364–6371

    Article  CAS  Google Scholar 

  22. Ge JP, Hu YX, Biasini M, Beyermann WP, Yin YD. Angew Chem Int Ed, 2007; 46: 4342–4345

    Article  CAS  Google Scholar 

  23. Cannas C, Ardu A, Peddis D, Sangregorio C, Piccaluga G, Musinu A. J Colloid Interf Sci, 2010; 343: 415–422

    Article  CAS  Google Scholar 

  24. Jafari A, Boustani K, Shayesteh SF. Supercond J Nov Magn, 2014; 27: 187–194

    Article  CAS  Google Scholar 

  25. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ. Adv Funct Mater, 2008; 18: 3941–3946

    Article  CAS  Google Scholar 

  26. Sun ZH, Wang LF, Liu PP, Wang SC, Sun B, Jiang DZ, Xiao FS. Adv Mater, 2006; 18: 1968–1971

    Article  CAS  Google Scholar 

  27. Liu J, Sun ZK, Deng YH, Zou Y, Li CY, Guo XH, Xiong LQ, Gao Y, Li FY, Zhao DY. Angew Chem Int Ed, 2009; 48: 5875–5879

    Article  CAS  Google Scholar 

  28. Frenkel JDJ. Nature, 1930; 126: 274–275

    Article  Google Scholar 

  29. Iida H, Takayanagi K, Nakanishi T, Osaka T. J Colloid Interf Sci, 2007; 314: 274–280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Xie or Ziyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Mi, S., Li, Y. et al. Synthesis of monodispersed Fe3O4@C core/shell nanoparticles. Sci. China Chem. 59, 394–397 (2016). https://doi.org/10.1007/s11426-015-5551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5551-2

Keywords

Navigation