Skip to main content
Log in

Bio-inspired multifunctional metallic glass

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

As a novel class of metallic materials, bulk metallic glasses (BMGs) have attracted a great deal of attention owing to their technological promise for practical engineering applications. In nature, biological materials exhibit inherent multifunctional integration, which provides some inspiration for scientists and engineers to construct multifunctional artificial materials. In this contribution, inspired by superhydrophobic self-cleaning lotus leaves, multifunctional bulk metallic glasses (BMG) materials have been fabricated through the thermoplastic forming-based process followed by the SiO2/soot deposition. To mimic the microscale papillae of the lotus leaf, the BMG micropillar with a hemispherical top was first fabricated using micro-patterned silicon templates based on thermoplastic forming. The deposited randomly distributed SiO2/soot nanostructures covered on BMG micropillars are similar to the branch-like nanostructures on papillae of the lotus leaf. Micro-nanoscale hierarchical structures endow BMG replica with superhydrophobicity, a low adhesion towards water, and self-cleaning, similar to the natural lotus leaf. Furthermore, on the basis of the observation of the morphology of BMG replica in the Si mould, the formation mechanism of BMG replica was proposed in this work. The BMG materials with multifunction integration would extend their practical engineering applications and we expect this method could be widely adopted for the fabrication of other multifunctional BMG surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klement W, Willens RH, Duwez P. Nature, 1960, 187: 869–870

    Article  CAS  Google Scholar 

  2. Wu ZW, Li MZ, Wang WH, Liu KX. Nat Commun, 2015, 6: 6035

    Article  CAS  Google Scholar 

  3. Kumar G, Desai A, Schroers J. Adv Mater, 2011, 23: 461–476

    Article  CAS  Google Scholar 

  4. Wang WH. Adv Mater, 2009, 21: 4524–4544

    Article  CAS  Google Scholar 

  5. Wang WH. Prog Mater Sci, 2012, 57: 487–656

    Article  CAS  Google Scholar 

  6. Byrne CJ, Eldrup M. Science, 2008, 321: 502–503

    Article  CAS  Google Scholar 

  7. Kumar G, Tang HX, Schroers J. Nature, 2009, 457: 868–872

    Article  CAS  Google Scholar 

  8. Liu YH, Wang G, Wang RJ, Zhao DQ, Pan MX, Wang WH. Science, 2007, 315: 1385–1388

    Article  CAS  Google Scholar 

  9. Sarac B, Ketkaew J, Popnoe DO, Schroers J. Adv Funct Mater, 2012, 22: 3161–3169

    Article  CAS  Google Scholar 

  10. Zhang B, Zhao DQ, Pan MX, Wang WH, Greer AL. Phys Rev Lett, 2005, 94: 205502

    Article  CAS  Google Scholar 

  11. Liu K, Jiang L. Acs Nano, 2011, 5: 6786–6790

    Article  CAS  Google Scholar 

  12. Aizenberg J, Fratzl P. Adv Mater, 2009, 21: 387–388

    Article  CAS  Google Scholar 

  13. Liu K, Jiang L. Nano Today, 2011, 6: 155–175

    Article  CAS  Google Scholar 

  14. Chen PY, Mc Kittrick J, Meyers MA. Prog Mater Sci, 2012, 57: 1492–1704

    Article  CAS  Google Scholar 

  15. Liu KS, Cao MY, Fujishima A, Jiang L. Chem Rev, 2014, 114: 10044–10094

    Article  CAS  Google Scholar 

  16. Bellanger H, Darmanin T, de Givenchy ET, Guittard F. Chem Rev, 2014, 114: 2694–2716

    Article  CAS  Google Scholar 

  17. Liu K, Yao X, Jiang L. Chem Soc Rev, 2010, 39: 3240–3255

    Article  CAS  Google Scholar 

  18. Zheng YM, Gao XF, Jiang L. Soft Matter, 2007, 3: 178–182

    Article  CAS  Google Scholar 

  19. Gao XF, Jiang L. Nature, 2004, 432: 36

    Article  CAS  Google Scholar 

  20. Liu K, Du J, Wu J, Jiang L. Nanoscale, 2012, 4: 768–772

    Article  CAS  Google Scholar 

  21. Zheng YM, Bai H, Huang ZB, Tian XL, Nie FQ, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463: 640–643

    Article  CAS  Google Scholar 

  22. Parker AR, Lawrence CR. Nature, 2001, 414: 33–34

    Article  CAS  Google Scholar 

  23. Yang S, Du JX, Cao MY, Yao X, Ju J, Jin X, Su B, Liu KS, Jiang L. Angew Chem Int Ed, 2015, 54: 4792–4795

    Article  CAS  Google Scholar 

  24. Gao SJ, Shi Z, Zhang WB, Zhang F, Lin J. Acs Nano, 2014, 8: 6344–6352

    Article  CAS  Google Scholar 

  25. Sun TL, Qing GY, Su BL, Jiang L. Chem Soc Rev, 2011, 40: 2909–2921

    Article  CAS  Google Scholar 

  26. Liu K, Jiang L. Nanoscale, 2011, 3: 825–838

    Article  CAS  Google Scholar 

  27. Sun TL, Qing GY. Adv Mater, 2011, 23: H57–H77

    Article  CAS  Google Scholar 

  28. Yao X, Song YL, Jiang L. Adv Mater, 2011, 23: 719–734

    Article  CAS  Google Scholar 

  29. Bhushan B. Langmuir, 2012, 28: 1698–1714

    Article  CAS  Google Scholar 

  30. Zhao H, Law KY. Acs Appl Mater Inter, 2012, 4: 4288–4295

    Article  CAS  Google Scholar 

  31. Zhang WB, Zhu YZ, Liu X, Wang D, Li JY, Jiang L, Jin J. Angew Chem Int Ed, 2014, 53: 856–860

    Article  CAS  Google Scholar 

  32. Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L. Adv Mater, 2013, 25: 4192–4198

    Article  CAS  Google Scholar 

  33. Zhang B, Pan MX, Zhao DQ, Wang WH. Appl Phys Lett, 2004, 85: 61–63

    Article  CAS  Google Scholar 

  34. Stöber W, Fink A, Bohn E. J Colloid Interf Sci, 1968, 26: 62–69

    Article  Google Scholar 

  35. Schroers J. Jom-Us, 2005, 57: 35–39

    Article  CAS  Google Scholar 

  36. Schroers J. Adv Mater, 2010, 22: 1566–1597

    Article  CAS  Google Scholar 

  37. Chiu HM, Kumar G, Blawzdziewicz J, Schroers J. Scr Mater, 2009, 61: 28–31

    Article  CAS  Google Scholar 

  38. Liu K, Li Z, Wang W, Jiang L. Appl Phys Lett, 2011, 99: 261905

    Article  Google Scholar 

  39. Xia T, Li N, Wu Y, Liu L. Appl Phys Lett, 2012, 101: 081601

    Article  Google Scholar 

  40. Li N, Xia T, Heng LP, Liu L. Appl Phys Lett, 2013, 102: 251603

    Article  Google Scholar 

  41. Ma J, Zhang XY, Wang DP, Zhao DQ, Ding DW, Liu K, Wang WH. Appl Phys Lett, 2014, 104: 173701

    Article  Google Scholar 

  42. Nosonovsky M, Bhushan B. Microsyst Technol, 2005, 11: 535–549

    Article  CAS  Google Scholar 

  43. Bico J, Marzolin C, Quéré D. Europhys Lett, 1999, 47: 220–226

    Article  CAS  Google Scholar 

  44. Liu K, Jiang L. Annu Rev Mater Res, 2012, 42: 231–263

    Article  CAS  Google Scholar 

  45. Shibuichi S, Onda T, Satoh N, Tsujii K. J Phys Chem, 1996, 100: 19512–19517

    Article  CAS  Google Scholar 

  46. Nosonovsky M. Langmuir, 2007, 23: 3157–3161

    Article  CAS  Google Scholar 

  47. Jin X, Yang S, Li Z, Liu K, Jiang L. Sci China Chem, 2012, 55: 2327–2333

    Article  CAS  Google Scholar 

  48. Ahuja A, Taylor JA, Lifton V, Sidorenko AA, Salamon TR, Lobaton EJ, Kolodner P, Krupenkin TN. Langmuir, 2008, 24: 9–14

    Article  CAS  Google Scholar 

  49. Wenzel RN. Ind Eng Chem, 1936, 28: 988–994

    Article  CAS  Google Scholar 

  50. Cassie A, Baxter S. Trans Faraday Soc, 1944, 40: 546–551

    Article  CAS  Google Scholar 

  51. Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson CDW, Riehle MO. Nano Lett, 2005, 5: 2097–2103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kesong Liu or Weihua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Peng, Y., Li, Z. et al. Bio-inspired multifunctional metallic glass. Sci. China Chem. 59, 271–276 (2016). https://doi.org/10.1007/s11426-015-5496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5496-5

Keywords

Navigation