Skip to main content
Log in

The superplastic forming of bulk metallic glasses

  • Overview
  • Casting Defects
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Superplastic forming (SPF) is introduced in this article as a net-shape processing method for bulk metallic glasses (BMGs), commercially known as Liquidmetal® alloys. This method decouples fast cooling and forming of the BMG. Forming takes place in the supercooled liquid region, where the BMG exists as a highly viscous liquid and increases its fluidity with increasing temperature. The SPF method is very similar to techniques used for processing thermoplastics. In this work, a simple flow law is used to quantify the forming ability and to estimate both the potential and the limitations of the SPF method. This process is especially well suited to replicate small features and thin sections with high aspect ratios, which makes this process appropriate for microelectromechanical systems, nano- and microtechnology, jewelry, medical and optical applications, and data storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kui, A.L. Greer, and D. Turnbull, Appl. Phys. Lett., 45 (1984), p. 615.

    Article  CAS  Google Scholar 

  2. N. Nishiyama and A. Inoue, Mater. Trans. JIM, 37 (1996), p. 1531.

    CAS  Google Scholar 

  3. I.-R. Lu et al., J. Non-Cryst. Solids, 250–252 (1999), p. 577.

    Article  Google Scholar 

  4. A. Inoue et al., Mater. Trans. JIM, 31 (1990), p. 104.

    CAS  Google Scholar 

  5. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM, 31 (1990), p. 177.

    CAS  Google Scholar 

  6. A. Peker and W.L. Johnson, Appl. Phys. Lett., 63 (1993), p. 2342.

    Article  Google Scholar 

  7. J. Schroers and W.L. Johnson, Appl. Phys. Lett., 84 (2004), p. 3666.

    Article  CAS  Google Scholar 

  8. V. Ponnambalam, S.J. Poon, and G.J. Shiftlet, J. of Mat. Res., 19 (2004), p. 1320.

    Article  CAS  Google Scholar 

  9. Z.P. Lu et al., Phys. Rev. Lett., 92 (2004), p. 245503.

    Article  CAS  Google Scholar 

  10. J. Schroers et al., Appl. Phys. Lett. (2004), submitted.

  11. J. Schroers and W.L. Johnson, Phys. Rev. Lett., 93 (2004), p. 255506.

    Article  CAS  Google Scholar 

  12. F. Guo et al., Appl. Phys. Lett., 86 (2005) p. 91907.

    Article  CAS  Google Scholar 

  13. R. Busch, JOM, 52 (7) (2000), p. 39.

    Article  CAS  Google Scholar 

  14. J. Schroers et al., Appl. Phys. Lett., 74 (1999), p. 2806.

    Article  CAS  Google Scholar 

  15. J. Schroers et al., Acta Materialia, 49 (2001), p. 2773.

    Article  CAS  Google Scholar 

  16. E.A. Muccio, Plastic Part Technology (Materials Park, OH: ASM International, 1991).

    Google Scholar 

  17. H.J. Leamy, H.S. Chen, and T.T. Wang, Metallurgical Transactions, 3 (1972), p. 699.

    CAS  Google Scholar 

  18. C.A. Pampillo and H.S. Chen, Materials Science and Engineering, 13 (1974), p. 181.

    Article  CAS  Google Scholar 

  19. N. Nishiyama and A. Inoue, Mat. Trans. JIM, 40 (1999), p. 64.

    CAS  Google Scholar 

  20. Y. Saotome et al., J. of Materials Processing Technology, 113 (2001), p. 64.

    Article  CAS  Google Scholar 

  21. Y. Saotome et al., Scripta Mat., 44 (2001), p. 1541.

    Article  CAS  Google Scholar 

  22. Y. Saotome et al., Intermetallics, 10 (2002), p. 1241.

    Article  CAS  Google Scholar 

  23. N.H. Pryds, Mater. Sci. Eng., A375-377 (2004), p. 186.

    Google Scholar 

  24. J. Schroers et al., J. of Appl. Phys., 96 (2004), p. 7723.

    Article  CAS  Google Scholar 

  25. Y. Kawamura et al., Mater. Sci. Eng., 98 (1988), p. 415.

    Article  CAS  Google Scholar 

  26. Y. Kawamura, H. Kato, and A. Inoue, Appl. Phys. Lett., 67 (1995), p. 2008.

    Article  CAS  Google Scholar 

  27. Y. Kawamura et al., Mater. Sci. Eng., 98 (1988), p. 449.

    Article  CAS  Google Scholar 

  28. D.J. Sordelet et al., J. Mater. Res., 17 (2002), p. 186.

    Article  CAS  Google Scholar 

  29. I. Karaman et al., Metall. and Met. Trans. A, 34A (2003), p. 247.

    Google Scholar 

  30. J. Lu, G. Ravichandran, and W.L. Johnson, Acta Materialia, 51 (2003), p. 3429.

    Article  CAS  Google Scholar 

  31. T.A. Waniuk, J. Schroers, and W.L. Johnson, Appl. Phys. Lett., 78 (2001), p. 1213.

    Article  CAS  Google Scholar 

  32. T.A. Waniuk, J. Schroers, and W.L. Johnson, Phys. Rev. B, 67 (2003), p. 184203.

    Article  CAS  Google Scholar 

  33. D.R. Lide, Handbook of Chemistry and Physics, 73rd edition (Boca Raton, FL: CRC Press, 1992).

    Google Scholar 

  34. S. Mukherjee et al., Acta Materialia, 52 (2004), p. 3689.

    Article  CAS  Google Scholar 

  35. J. Schroers, R. Busch, and W.L. Johnson, Appl. Phys. Lett., 76 (2000), p. 2343.

    Article  CAS  Google Scholar 

  36. X.H. Lin, W.L. Johnson, and W.-K. Rhim, Mater. Trans. JIM, 38 (1997), p. 473.

    CAS  Google Scholar 

  37. J. Schroers, Y. Wu, and W.L. Johnson, Philosophical Magazine A, 82 (2002), p. 1207.

    Article  CAS  Google Scholar 

  38. C.T. Liu, M.F. Chisholm, and M.K. Miller, Intermetallics, 10 (2002), p. 1105.

    Article  CAS  Google Scholar 

  39. M.F. de Oliveira et al., Mater. Sci. Forum, 386-3 (2002), p. 53.

    Article  Google Scholar 

  40. A. Inoue, T. Zhang, and T. Masumoto, J. Non-Cryst. Solids, 156–158 (1993), p. 473.

    Article  Google Scholar 

  41. T.D. Shen and R.B. Schwarz, Appl. Phys. Lett., 75 (1999), p. 49.

    Article  CAS  Google Scholar 

  42. D.W. Xing et al., J. Alloys and Com., 375 (2004), p. 239.

    Article  CAS  Google Scholar 

  43. T. Zhang and A. Inoue, Mater. Trans. JIM, 44 (2003), p. 1143.

    Article  CAS  Google Scholar 

  44. V. Ponnambalam, S.J. Poon, and G.J. Shiflet, J. of Mater. Research, 19 (2004), p. 3046.

    Article  CAS  Google Scholar 

  45. A.C. Angell, Science, 267 (1995), p. 1924.

    Article  CAS  Google Scholar 

  46. C.J. Gilbert, R.O. Ritchie, and W.L. Johnson, Appl. Phys. Lett., 71 (1997), p. 476.

    Article  CAS  Google Scholar 

  47. M. Yan, J.F. Sun, and J. Shen, J. Alloys and Com., 381 (2004), p. 86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Jan Schroers, Liquidmetal Technologies, 25800 Commerce Drive, Suite 100, Lake Forest, CA 92630; (949) 206-8063; fax (949) 206-8088; e-mail jan.schroers@liquidmetal.com.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroers, J. The superplastic forming of bulk metallic glasses. JOM 57, 35–39 (2005). https://doi.org/10.1007/s11837-005-0093-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0093-2

Keywords

Navigation