Skip to main content
Log in

Electrochemical construction of porous gold nanostructures on DVD substrate and its application as nonenzymatic hydrogen peroxide sensor

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A simple acid-etching method was used to leach out silver from a bimetallic gold-silver based Digital Video Disc (DVD), which was further treated via a cyclic voltammetric scanning in 1 mmol/L HAuCl4 solution to create a porous gold nanostructure. The as-fabricated electrode was characterized by field-emission scanning electron microscopy, energy-dispersed X-ray spectroscopy and X-ray diffraction. The high electro-catalytic activity of the resulting electrode toward the reduction of hydrogen peroxide (H2O2) presented excellent linear relationship in the range of 8.0×10−5 to 1.26×10−2 mol/L with the detection limit of 2.0×10−5 mol/L (S/N=3). The as-developed non-enzyme-sensor showed good reproducibility, stability, and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J, Liu J, Peng Q, Wang X, Li Y. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater, 2006, 18: 867–871

    Article  CAS  Google Scholar 

  2. Srivastava R, Mani P, Hahn N, Strasser P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles. Angew Chem Int Ed, 2007, 46: 8988–8991

    Article  Google Scholar 

  3. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2004, 104: 293–346

    Article  CAS  Google Scholar 

  4. Guo S, Fang Y, Dong S, Wang E. High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: spongelike Au/Pt core/shell nanomaterial with hollow cavity. J Phys Chem C, 2007, 111: 17104–17109

    Article  CAS  Google Scholar 

  5. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature, 1973, 241: 20–22

    CAS  Google Scholar 

  6. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc, 1951, 11: 55–75

    Article  Google Scholar 

  7. Wang N, Wen Y, Wang Y, Zhang R, Chen X, Ling B, Huan S, Yang H. The IP(6) micelle-stabilized small Ag cluster for synthesizing Ag-Au alloy nanoparticles and the tunable surface plasmon resonance effect. Nanotechnology, 2012, 23: 145702

    Article  Google Scholar 

  8. Lin AJ, Wen Y, Zhang LJ, Lu B, Li Y, Jiao YZ, Yang HF. Layer-by-layer construction of multi-walled carbon nanotubes, zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection. Electrochim Acta, 2011, 56: 1030–1036

    Article  CAS  Google Scholar 

  9. Khaing Oo MK, Chang CF, Sun Y, Fan X. Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates. Analyst, 2011, 136: 2811–2817

    Article  Google Scholar 

  10. Parkhomenko RG, Morozova NB, Zharkova GI, Shubin YV, Trubin SV, Kriventsov VV, Kuchumov BM, Koretskaya TP, Igumenov IK. Deposition of Au thin films and nanoparticles by MOCVD. Chem Vap Depos, 2012, 18: 336–342

    Article  CAS  Google Scholar 

  11. Pruneanu S, Biris AR, Pogacean F, Lazar DM, Ardelean S, Watanabe F, Dervishi E, Biris AS. Novel multifunctional graphene sheets with encased Au/Ag nanoparticles for advanced electrochemical analysis of organic compounds. ChemPhysChem, 2012, 13: 3632–3639

    Article  CAS  Google Scholar 

  12. Gazia R, Chiodoni A, Bianco S, Lamberti A, Quaglio M, Sacco A, Tresso E, Mandracci P, Pirri CF. An easy method for the room-temperature growth of spongelike nanostructured Zn films as initial step for the fabrication of nanostructured ZnO. Thin Solid Films, 2012, 524: 107–112

    Article  CAS  Google Scholar 

  13. Jia J, Wang B, Wu A, Cheng G, Li Z, Dong S. A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal Chem, 2002, 74: 2217–2223

    Article  CAS  Google Scholar 

  14. Wang Y, Ma X, Wen Y, Zheng Y, Duan G, Zhang Z, Yang H. Phytic acid-based layer-by-layer assembly for fabrication of mesoporous gold film and its biosensor application. J Electrochem Soc, 2010, 157: K5

    Article  CAS  Google Scholar 

  15. Ding Y, Liu Y, Parisi J, Zhang L, Lei Y. A novel NiO-Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens Bioelectron, 2011, 28: 393–398

    Article  CAS  Google Scholar 

  16. Li D, McCann JT, Gratt M, Xia Y. Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania. Chem Phys Lett, 2004, 394: 387–391

    Article  CAS  Google Scholar 

  17. Giallongo G, Pilot R, Durante C, Rizzi GA, Signorini R, Bozio R, Gennaro A, Granozzi G. Silver nanoparticle arrays on a DVD-derived template: an easy & cheap SERS substrate. Plasmonics, 2011, 6: 725–733

    Article  CAS  Google Scholar 

  18. Muñoz RA, Matos RC, Angnes L. Gold electrodes from compact discs modified with platinum for amperometric determination of ascorbic acid in pharmaceutical formulations. Talanta, 2001, 55: 855–860

    Article  Google Scholar 

  19. Wen Y, Lin AJ, Chen HF, Jiao YZ, Yang HF. From DVD to dendritic nanostructure silver electrode for hydrogen peroxide detection. Biosens Bioelectron, 2013, 41: 857–861

    Article  CAS  Google Scholar 

  20. Welch CM, Banks CE, Simm AO, Compton RG. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem, 2005, 382: 12–21

    Article  CAS  Google Scholar 

  21. Honda M, Kodera T, Kita H. Electrochemical behavior of H2O2 at Ag in HClO4 aqueous solution. Electrochim Acta, 1986, 31: 377–383

    Article  CAS  Google Scholar 

  22. Meng F, Yan X, Liu J, Gu J, Zou Z. Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim Acta, 2011, 56: 4657–4662

    Article  CAS  Google Scholar 

  23. Cuenya BR. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films, 2010, 518: 3127–3150

    Article  CAS  Google Scholar 

  24. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 1980

    Google Scholar 

  25. Delvaux M, Walcarius A. Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles. Anal Chim Acta, 2004, 525: 221–230

    Article  CAS  Google Scholar 

  26. Qian L, Yang X. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta, 2006, 68: 721–727

    Article  CAS  Google Scholar 

  27. Yao H, Li N, Xu S, Xu JZ, Zhu JJ, Chen HY. Electrochemical study of a new methylene blue/silicon oxide nanocomposition mediator and its application for stable biosensor of hydrogen peroxide. Biosens Bioelectron, 2005, 21: 372–377

    Article  CAS  Google Scholar 

  28. Zhang J, Oyama M. A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles modified ITO electrode. Electrochim Acta, 2004, 50: 85–90

    Article  CAS  Google Scholar 

  29. Yang J, Xiang H, Shuai L, Gunasekaran S. A sensitive enzymeless hydrogen-peroxide sensor based on epitaxially-grown Fe3O4 thin film. Anal Chim Acta, 2011, 708: 44–51

    Article  CAS  Google Scholar 

  30. Xiang C, Zou Y, Sun LX, Xu F. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite. Sensor Actuat B-Chem, 2009, 136: 158–162

    Article  CAS  Google Scholar 

  31. Ye Y, Kong T, Yu X, Wu Y, Zhang K, Wang X. Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta, 2012, 89: 417–421

    Article  CAS  Google Scholar 

  32. Zhu S, Fan L, Liu X, Shi L, Li H, Han S, Xu G. Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode. Electrochem Commun, 2008, 10: 695–698

    Article  CAS  Google Scholar 

  33. Wang X, Zhang H, Wang E, Han Z, Hu C. Phosphomolybdate-polypyrrole composite bulk-modified carbon paste electrode for a hydrogen peroxide amperometric sensor. Mater Lett, 2004, 58: 1661–1664

    Article  CAS  Google Scholar 

  34. Lu W, Liao F, Luo Y, Chang G, Sun X. Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochim Acta, 2011, 56: 2295–2298

    Article  CAS  Google Scholar 

  35. Shi Y, Liu Z, Zhao B, Sun Y, Xu F, Zhang Y, Wen Z, Yang H, Li Z. Carbon nanotube decorated with silver nanoparticles via noncovalent interaction for a novel nonenzymatic sensor towards hydrogen peroxide reduction. J Electroanal Chem, 2011, 656: 29–33

    Article  CAS  Google Scholar 

  36. Wei N, Xin X, Du J, Li J. A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film. Biosens Bioelectron, 2011, 26: 3602–3607

    Article  CAS  Google Scholar 

  37. Guo S, Wen D, Dong S, Wang E. Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta, 2009, 77: 1510–1517

    Article  CAS  Google Scholar 

  38. Kafi AK, Ahmadalinezhad A, Wang J, Thomas DF, Chen A. Direct growth of nanoporous Au and its application in electrochemical biosensing. Biosens Bioelectron, 2010, 25: 2458–2463

    Article  CAS  Google Scholar 

  39. Xia P, Liu H, Tian Y. Cathodic detection of H2O2 based on nanopyramidal gold surface with enhanced electron transfer of myoglobin. Biosens Bioelectron, 2009, 24: 2470–2474

    Article  CAS  Google Scholar 

  40. Yang YJ, Hu S. Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide. Electrochim Acta, 2010, 55: 3471–3476

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Wen or Haifeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, X., Liu, G. et al. Electrochemical construction of porous gold nanostructures on DVD substrate and its application as nonenzymatic hydrogen peroxide sensor. Sci. China Chem. 58, 1585–1592 (2015). https://doi.org/10.1007/s11426-015-5403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5403-0

Keywords

Navigation