Skip to main content
Log in

Adsorption behaviors of Eu(III) on granite: batch, electron probe micro-analysis and modeling studies

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Although granite has been widely considered as the host rock of the high-level radioactive waste (HLRW) repository in the world, the adsorption behaviors of radionuclides on granite are quite complicated and still unclear, especially at molecular scales. In this study, the adsorption behaviors of europium(III) on Beishan granite (BSG), a preliminary selection of host rock for the HLRW repository in China, were explored under environmental conditions combining batch, electron probe micro-analyzer (EPMA), and modeling approaches. X-ray diffraction (XRD) pattern confirmed that albite, quartz and biotite were the main mineralogical components for the BSG grains. Eu(III) species on BSG grains are predominant as the ion exchange (≡X3Eu0) and the inner sphere complexes of ≡SwOEu(OH)20, ≡SsOEu(OH)2,0 ≡SsOEu2+, and ≡SwOEu2+. EPMA showed that the distribution of Eu(III) on BSG grains was strongly correlated to the biotite, which suggested that biotite is the host phase for retarding trivalent actinides in the BSG grains. The presence of soil humic and fulvic acids could enhance Eu(III) adsorption on BSG grains under low-pH conditions, and inhibit the adsorption under higher pH range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baek K, Yang JW (2004) Sorption and desorption characteristics of cobalt in clay: Effect of humic acids. Korean J Chem Eng 21(5):989–993

    Article  Google Scholar 

  • Bierkens J, Simkiss K (1990) The use of chemical analogues such as Eu/Am in ecotoxicological studies. Funct Ecology 4(3):445–447

    Article  Google Scholar 

  • Bradbury MH, Baeyens B (2002) Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta 66(13):2325–2334

    Article  Google Scholar 

  • Dario M, Molera M, Allard B (2006) Sorption of europium on TiO2 and cement at high pH in the presence of organic ligands. J Radioanal Nucl Chem 270(3):495–505

    Article  Google Scholar 

  • Ding CC, Cheng WC, Sun YB, Wang XK (2005) Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J Hazard Mater 295:127–137

    Article  Google Scholar 

  • Fan QH, Wu WS, Song XP, Xu JZ, Hu JH, Niu ZW (2008) Effect of humic acid, fulvic acid, pH and temperature on the sorption–desorption of Th(IV) on attapulgite. Radiochim Acta 96(3):159–165

    Google Scholar 

  • Fan QH, Tan XL, Li JX, Wang XK, Wu WS (2009) Sorption of Eu(III) on attapulgite studied by Batch, XPS, and EXAFS techniques. Environ Sci Technol 43(15):5776–5782

    Article  Google Scholar 

  • Fan QH, Li P, Chen YF, Wu WS (2011) Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(VI) from aqueous solution. J Hazard Mat 192(3):1851–1859

    Article  Google Scholar 

  • Fan QH, Zhao XL, Ma XX, Yang YB, Wu WS, Zheng GD, Wang DL (2015) Comparative adsorption of Eu(III) and Am(III) on TPD. Environ Sci Proc Impacts 17(9):1634–1640

    Article  Google Scholar 

  • Fukushi K, Hasegawa Y, Maeda K, Aoi Y, Tamura A, Arai S, Yamamoto Y, Aosai D, Mizuno T (2013) Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies. Environ Sci Technol 47(22):12811–12818

    Article  Google Scholar 

  • Guo ZJ, Xu J, Shi KL, Tang YQ, Wu WS, Tao ZY (2009) Eu(III) adsorption/desorption on Na-bentonite: experimental and modeling studies. Colloids Surf A Physicochem Eng Asp 339(1/3):126–133

    Article  Google Scholar 

  • Holgersson S (2012) Studies on batch sorption methodologies: Eu sorption onto Kivetty granite. Procedia Chem 7(7):629–640

    Article  Google Scholar 

  • Huang XF, He JG, Xu GQ (2009) Pre-selection research on granite mass for high level radioactive waste repository. World Nucl Geosci 26(4):219–227

    Google Scholar 

  • Ishida K, Kimura T, Saito T, Tanaka S (2009) Adsorption of Eu(III) on a heterogeneous surface studied by time-resolved laser fluorescence microscopy (TRLFM). Environ Sci Technol 43(6):1744–1749

    Article  Google Scholar 

  • Kitamura A, Yamamoto T, Nishikawa S, Moriyama H (1999) Sorption behavior of Am(III) onto granite. J Radioanal Nucl Chem 239(3):449–453

    Article  Google Scholar 

  • Lee SG, Kim Y, Chae BG, Koh DC, Kim KH (2004) The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Appl Geochem 19(11):1711–1725

    Article  Google Scholar 

  • Lee SG, Lee KY, Cho SY, Yoon SY, Kim YJ (2006) Sorption properties of 152Eu and 241Am in geological materials: Eu as an analogue for monitoring the Am behaviors in heterogeneous geological environments. Geosci J 10(2):103–114

    Article  Google Scholar 

  • Li P, Fan Q, Pan D, Liu S, Wu W (2011) Effects of pH, ionic strength, temperature, and humic acid on Eu(III) sorption onto iron oxides. J Radioanal Nucl Chem 289(3):757–764

    Article  Google Scholar 

  • Li P, Liu Z, Ma F, Shi Q, Guo Z, Wu W (2015) Effects of pH, ionic strength and humic acid on the sorption of neptunium(V) to Na-bentonite. J Mol Liq 206:285–292

    Article  Google Scholar 

  • Li P, Ma X, Li H, Li S, Wu H, Xu D, Zheng G, Fan Q (2017a) Sorption mechanism of Th (IV) at iron oxyhydroxide (IOHO)/water interface: Batch, model and spectroscopic studies. J Mol Liq 241:478–485

    Article  Google Scholar 

  • Li P, Wu H, Liang J, Yin Z, Pan D, Fan Q, Xu D, Wu W (2017b) Sorption of Eu(III) at feldspar/water interface: effects of pH, organic matter, counter ions, and temperature. Radiochim Acta 105(12):1049–1058

    Article  Google Scholar 

  • Li P, Wang J, Wang X, He B, Pan D, Liang J, Wang F, Fan Q (2018) Arsenazo-functionalized magnetic carbon composite for uranium(VI) removal from aqueous solution. J Mol Liq 269:441–449

    Article  Google Scholar 

  • Manohar DM, Noeline BF, Anirudhan TS (2006) Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase. Appl Clay Sci 31(3–4):194–206

    Article  Google Scholar 

  • Niu ZW, Fan QH, Wang WH, Xu JZ, Chen L, Wu WS (2009) Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite. Appl Radiat Isot 67(9):1582–1590

    Article  Google Scholar 

  • Pan DQ (2014) Sorption of U(VI), Th(IV) and Eu(III) on mineralogical components of granite and bentonite [D]. Lanzhou University, Lanzhou

    Google Scholar 

  • Qi W, Tian LL, Liu B, Lin J, Liu D, Tu PC, Liu D, Li Z, Chen XL, Wu WS (2015) Adsorption of Eu(III) on defective magnetic FeNi/RGO composites: effect of pH, ion strength, ions and humic acid. J Radioanal Nucl Chem 303(3):2211–2220

    Google Scholar 

  • Rabung TH, Geckeis H, Kim JI, Beck HP (1998) Sorption of Eu(III) on a natural hematite: application of a surface complexation model. J Colloid Interf Sci 208(1):153–161

    Article  Google Scholar 

  • Soler JM, Mäder UK (2007) Mineralogical alteration and associated permeability changes induced by a high-pH plume: modeling of a granite core infiltration experiment. Appl Geochem 22(1):17–29

    Article  Google Scholar 

  • Spark KM, Wells JD, Johnson BB (1997) The interaction of a humic acid with heavy metals. J Soil Res 35(1):89–101

    Article  Google Scholar 

  • Strathmann TJ, Myneni SB (2005) Effect of soil fulvic acid on nickel(II) sorption and bonding at the aqueous-boehmite interface. Environ Sci Technol 39(11):4027–4034

    Article  Google Scholar 

  • Sun YN, Chen CL, Tan XL, Shao DD, Li JX, Zhao GX, Yang SB, Wang Q, Wang XK (2012) Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. Dalton Trans 43(41):13388–13394

    Article  Google Scholar 

  • Sun YB, Li JX, Wang XK (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Acta 140:621–643

    Article  Google Scholar 

  • Tan XL, Fan QH, Wang XK, Grambow B (2009a) Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies. Environ Sci Technol 43(9):3115–3121

    Article  Google Scholar 

  • Tan XL, Fang M, Li JX, Lu Y, Wang XK (2009b) Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mat 168(1):458–465

    Article  Google Scholar 

  • Tertre E, Berger G, Simoni E, Castet S, Giffaut E, Loubet M, Catalette H (2006) Europium retention onto clay minerals from 25 to 150 °C: Experimental measurements, spectroscopic features and sorption modeling. Geochim Cosmochim Acta 70(18):4563–4578

    Article  Google Scholar 

  • Ticknor KV, Vilks P, Vandergraaf TT (1996) The effect of fulvic acid on the sorption of and fission products on granite and selected minerals. Appl Geochem 11(4):555–565

    Article  Google Scholar 

  • Wang XK, Dong WM, Dai XX, Wang AX, Du JZ, Tao ZY (2000) Sorption and desorption of Eu and Yb on alumina: Mechanisms and effect of fulvic acid. Appl Radiat Isot 52(2):165–173

    Article  Google Scholar 

  • Wang X, Xu D, Chen L, Tan X, Zhou X, Ren A, Chen C (2006) Sorption and complexation of Eu(III) on alumina: effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study. Appl Radiat Isot 64(4):414–421

    Article  Google Scholar 

  • Wang XF, Shi KL, Guo ZJ, Wu WS (2010) Eu(III) adsorption on rutile: Batch experiments and modeling. Sci China Chem 53(12):2628–2636

    Article  Google Scholar 

  • Wang YQ, Fan QH, Li P, Zheng XB, Xu JZ, Jin YR, Wu WS (2011) The sorption of Eu(III) on calcareous soil: effects of pH, ionic strength, temperature foreign ions and humic acid. J Radioanal Nucl Chem 287(1):231–237

    Article  Google Scholar 

  • Wang XX, Sun YB, Alsaedi A, Hayat T, Wang XK (2015) Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques. Chem Eng J 264:570–576

    Article  Google Scholar 

  • Wang J, He B, Wei X, Li P, Liang J, Qiang S, Fan Q, Wu W (2018) Sorption of uranyl ions on TiO2: Effects of pH, contact time, ionic strength, temperature and HA. J Environ Sci. https://doi.org/10.1016/j.jes.2018.03.010

    Article  Google Scholar 

  • Xu JZ, Fan QH, Niu ZW, Li Y, Li P, Wu WS (2012) Studies of Eu (III) sorption on TiO2: Effects of pH, humic acid and poly (acrylic acid). Chem Eng J 179:186–192

    Article  Google Scholar 

  • Yu T (2012) Study on sorption of Eu(III) and Am(III) onto red earth and bentonite [D]. Lanzhou University, Lanzhou

    Google Scholar 

  • Zhang YJ, Fan XH, Su XG, Zeng JS, Wang Y, Zhou D, Liu DJ, Yao J (2005) Sorption behavior of Pu on granite. J Nucl Radiochem 27(3):137–137

    Google Scholar 

  • Zhao X, Qiang S, Wu H, Yang Y, Shao D, Fang L, Liang J, Li P, Fan Q (2017a) Exploring the sorption mechanism of Ni(II) on illite: batch sorption, modelling, EXAFS and extraction investigations. Sci Rep 7(1):8495

    Article  Google Scholar 

  • Zhao X, Wang Y, Wu H, Fang L, Liang J, Fan Q, Li P (2017b) Insights into the effect of humic acid on Ni(II) sorption mechanism on illite: Batch, XPS and EXAFS investigations. J Mol Liq 248:1030–1038

    Article  Google Scholar 

  • Zhong X, Wang J, Hung ST, Wang SH (2012) The quantitative study of Pluton selection for the disposal repository of high level waste in Beishan. Uranium Geol 28(3):187–192

    Google Scholar 

  • Zhong XJ, Liu X, Duan SX, Yu SJ, Huang YS, Hayat T, Li JX (2016) The adsorption of Eu(III) on carbonaceous nanofibers: Batch experiments and modeling study. J Mol Liq 222:456–462

    Article  Google Scholar 

  • Zhu YK, Liu HB, Chen TH, Xu B, Li P (2016) Kinetics and thermodynamics of Eu(III) adsorption onto synthetic monoclinic pyrrhotite. J Mol Liq 218:565–570

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural National Science Foundation of China (Grant nos. 21601179, 41573128, 21876172, and 21601169), the Key Laboratory Project of Gansu Province (Grant no. 1309RTSA041), Natural Science Foundation of Jiangxi Province (Grant no. 2016BAB203100) and by the “100-Talent” Program from the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaohui Fan or Tao Yu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., He, B., Li, P. et al. Adsorption behaviors of Eu(III) on granite: batch, electron probe micro-analysis and modeling studies. Environ Earth Sci 78, 249 (2019). https://doi.org/10.1007/s12665-019-8170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8170-y

Keywords

Navigation