Skip to main content
Log in

From titanates to TiO2 nanostructures: Controllable synthesis, growth mechanism, and applications

  • Reviews
  • Progress of Projects Supported by NSFC Special Topic Growth Mechanism of Nanostructures
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The design and fabrication of nanostructures based on titanium dioxide (TiO2) have attracted much attention because of their low cost, non-toxicity, stability, and potential applications in industry and technology. Recently, one-dimensional (1D) structured titanates have been used as titanium source to prepare TiO2 nanostructures with various crystalline phases, shapes, sizes, exposed facets, and hierarchical structures. Among the synthetic strategies, hydrothermal method is a facile route to controllable preparation of well-crystalline TiO2 in one step. Herein, we review our recent progress in transferring 1D titanates into TiO2 nanostructures through hydrothermal method, including the transformation mechanism and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater, 2003, 15: 353–389

    Article  CAS  Google Scholar 

  2. Jun Y-W, Choi J-S, Cheon J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed, 2006, 45: 3414–3439

    Article  CAS  Google Scholar 

  3. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  Google Scholar 

  4. O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  5. Chen X, Mao SS. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891–2959

    Article  CAS  Google Scholar 

  6. Liu G, Wang L, Yang HG, Cheng H-M, Lu GQ. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J Mater Chem, 2010, 20: 831–843

    Article  Google Scholar 

  7. Liu S, Yu J, Jaroniec M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties and applications. Chem Mater, 2011, 23: 4085–4093

    Article  CAS  Google Scholar 

  8. Liu S, Li J, Shen Q, Cao Y, Guo X, Zhang G, Feng C, Zhang J, Liu Z, Steigerwald ML, Xu D, Nuckolls C. Mirror-image photoswitching of individual single-walled carbon nanotube transistors coated with titanium dioxide. Angew Chem Int Ed, 2009, 48: 4759–4762

    Article  CAS  Google Scholar 

  9. Zhu H, Gao X, Lan Y, Song D, Xi Y, Zhao J. Hydrogen titanate nanofibers covered with anatase nanocrystals: A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers. J Am Chem Soc, 2004, 126: 8380–8381

    Article  CAS  Google Scholar 

  10. Zhu H, Lan Y, Gao X, Ringer S, Zheng Z, Song D, Zhao J. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J Am Chem Soc, 2005, 127: 6730–6736

    Article  CAS  Google Scholar 

  11. Yu Y, Xu D. Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts. Appl Catal B, 2007, 73: 166–171

    Article  CAS  Google Scholar 

  12. Tsai CC, Teng HS. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem Mater, 2006, 18: 367–373

    Article  CAS  Google Scholar 

  13. Nian JN, Teng HS, Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J Phys Chem B, 2006, 110: 4193–4198

    Article  CAS  Google Scholar 

  14. Du GH, Chen Q, Che RC, Yuan ZY, Peng LM. Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett, 2001, 79: 3702–3704

    Article  CAS  Google Scholar 

  15. Poudel B, Wang WZ, Dames C, Huang JY, Kunwar S, Wang DZ, Banerjee D, Chen G, Ren ZF. Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology, 2005, 16: 1935–1940

    Article  CAS  Google Scholar 

  16. Armstrong AR, Armstrong G, Canales J, Bruce PG. TiO2-B nanowires. Angew Chem Int Ed, 2004, 43: 2286–2288

    Article  CAS  Google Scholar 

  17. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of titanium oxide nanotube. Langmuir, 1998, 14: 3160–3163

    Article  CAS  Google Scholar 

  18. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihaha K. Titania nanotubes prepared by chemical processing. Adv Mater, 1999, 11: 1307–1311

    Article  CAS  Google Scholar 

  19. Wu D, Liu J, Zhao XN, Li AD, Chen YF, Ming NB. Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem Mater, 2006, 18: 547–553

    Article  CAS  Google Scholar 

  20. Morgan DL, Liu H-W, Frost RL, Waclawik ER. Implications of precursor chemistry on the alkaline hydrothermal synthesis of titania/titanate nanostructures. J Phys Chem C, 2010, 114: 101–110

    Article  CAS  Google Scholar 

  21. Nakahira A, Kato W, Tamai M, Isshiki T, Nishio K. Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources. J Mater Sci, 2004, 39: 4239–4245

    Article  CAS  Google Scholar 

  22. Ou H-H, Lo S-L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Sep Purif Technol, 2007, 58: 179–191

    Article  CAS  Google Scholar 

  23. Bavykin DV, Walsh FC. Elongated titanate nanostructures and their applications. Eur J Inorg Chem, 2009, 977-997

  24. Bavykin DV, Friedrich JM, Walsh FC. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv Mater, 2006, 18: 2807–2824

    Article  CAS  Google Scholar 

  25. Du G, Chen Q, Han P, Yu Y, Peng L-M. Potassium titanate nanowires: Structure, growth, and optical properties. Phys Rev B, 2003, 67: 035323

    Article  Google Scholar 

  26. Wang R, Chen Q, Wang B, Zhang S, Peng L-M. Strain-induced formation of K2Ti6O13 nanowires via ion exchange. Appl Phys Lett, 2005, 86: 133101

    Article  Google Scholar 

  27. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453: 638–641

    Article  CAS  Google Scholar 

  28. Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Zou J, Cheng HM, Lu GQ. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc, 2009, 131: 4078–4083

    Article  CAS  Google Scholar 

  29. Han X, Kuang Q, Jin M, Xie Z, Zheng L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc, 2009, 131: 3152–3153

    Article  CAS  Google Scholar 

  30. Beltran A, Sambrano JR, Calatayud M, Sensato FR, Andres J. Static simulation of bulk and selected surfaces of anatase TiO2. Surf Sci, 2001, 490: 116–124

    Article  CAS  Google Scholar 

  31. Calatayud M, Minot C. Effect of relaxation on structure and reactivity of anatase (100) and (001) surfaces. Surf Sci, 2004, 552: 169–179

    Article  CAS  Google Scholar 

  32. Li J, Xu D. Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active {100} facets. Chem Commun, 2010, 46: 2301–2303

    Article  CAS  Google Scholar 

  33. Li J, Cao K, Xu D. Tetragonal faceted-nanorods of anatase TiO2 with a large percentage of active {100} facets and their hierarchical structure. CrystEngComm, 2012, 14: 83–85

    Article  CAS  Google Scholar 

  34. Li J, Yu Y, Chen Q, Li J, Xu D. Controllable synthesis of TiO2 single crystals with tunable shapes using ammonium-exchanged titanate nanowires as precursors. Cryst Growth Des, 2010, 10: 2111–2115

    Article  CAS  Google Scholar 

  35. Amano F, Yasumoto T, Prieto-Mahaney O-O, Uchida S, Shibayama T, Ohtani B. Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium(IV) oxide. Chem Commun, 2009, 46: 2311–2313

    Article  Google Scholar 

  36. Deng Q, Wei M, Ding X, Jiang L, Wei K, Zhou H. Large single-crystal anatase TiO2 bipyramids. J Cryst Growth, 2010, 312: 213–219

    Article  CAS  Google Scholar 

  37. Han X, Wang X, Xie S, Kuang Q, Ouyang J, Xie Z, Zheng L. Carbonate ions-assisted syntheses of anatase TiO2 nanoparticles exposed with high energy (001) facets. RSC Adv, 2012, 2: 3251–3253

    Article  CAS  Google Scholar 

  38. Bakardjieva S, Stengl V, Szatmary L, Subrt J, Lukac J, Murafa N, Niznansky D, Cizek K, Jirkovsky J, Petrova N. Transformation of brookite-type TiO2 nanocrystals to rutile: Correlation between microstructure and photoactivity. J Mater Chem, 2006, 16: 1709–1716

    Article  CAS  Google Scholar 

  39. Marchand R, Brohan L, Tournoux M. TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater Res Bull, 1980, 15: 1129–1133

    Article  CAS  Google Scholar 

  40. Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S. A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Ed, 2002, 41: 2811–2813

    Article  CAS  Google Scholar 

  41. Zhang J, Xu Q, Feng Z, Li M, Li C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed, 2008, 47: 1766–1769

    Article  CAS  Google Scholar 

  42. Li J, Yang H, Li Q, Xu D. Enlarging the application of potassium titanate nanowires as titanium source for preparation of TiO2 nanostructures with tunable phases. CrystEngComm, DOI: 10.1039/c2ce06672f

  43. Bruce PG, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 2930–2946

    Article  CAS  Google Scholar 

  44. Li J, Wan W, Zhou H, Li J, Xu D. Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Chem Commun, 2011, (47): 3439–3441

  45. Lijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  Google Scholar 

  46. Nalwa HS. Handbook of Nanostructured Materials and Nanotechnology. Academic Press, 2000

  47. Klabunde KJ. Nanoscale Materials in Chemistry. John Wiley & Sons, Inc, 2001

  48. Wang ZL. Nanowires and Nanobelts: Materials, Properties and Devices. Kluwer Press, 2003

  49. Wu X-J, Zhu F, Mu C, Liang Y, Xu L, Chen Q, Chen R, Xu D. Electrochemical synthesis and applications of oriented and hierarchically quasi-1D semiconducting nanostructures. Coord Chem Rev, 2010, 254: 1135–1150

    Article  CAS  Google Scholar 

  50. Armstrong G, Armstrong AR, Canales J, Bruce PG. Nanotubes with the TiO2-B structure. Chem Commun, 2005, 41: 2454–2456

    Article  Google Scholar 

  51. Mao Y, Wong SS. Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. J Am Chem Soc, 2006, 128: 8217–8226

    Article  CAS  Google Scholar 

  52. Yang D, Liu H, Zheng Z, Yuan Y, Zhao J-C, Waclawik ER, Ke X, Zhu H. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J Am Chem Soc, 2009, 131: 17885–17893

    Article  CAS  Google Scholar 

  53. Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD. Hierarchically ordered oxides. Science, 1998, 282: 2244–2246

    Article  CAS  Google Scholar 

  54. Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y. Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett, 2002, 2: 717–720

    Article  CAS  Google Scholar 

  55. Chen Q, Xu D. Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C, 2009, 113: 6310–6314

    Article  CAS  Google Scholar 

  56. Yang W-G, Wan F-R, Chen Q-W, Li J-J, Xu D-S. Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells. J Mater Chem, 2010, 20: 2870–2876

    Article  CAS  Google Scholar 

  57. Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou XW. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc, 2010, 132: 6124–6130

    Article  CAS  Google Scholar 

  58. Yang W, Li J, Wang Y, Zhu F, Shi W, Wan F. Xu D. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem Commun, 2011, (47): 1809–1811

  59. Li J, Wan W, Zhu F, Li Q, Zhou H, Li J, Xu D. Nanotube-based hierarchical titanate microspheres: An improved anode structure for Li-ion batteries. Chem Commun, 2012, (48): 389–391

  60. Clarke JB, Hastie JW, Kihlborg LHE, Metselaar R, Thackeray MM. Definitions of terms relating to phase transitions of the solid state. Pure & Appl Chem, 1994, 66: 577–594

    Article  Google Scholar 

  61. Barnard AS, Zapol P, Curtiss LA. Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions. Surf Sci, 2005, 582: 173–188

    Article  CAS  Google Scholar 

  62. Barnard AS, Curtiss LA. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett, 2005, 5: 1261–1266

    Article  CAS  Google Scholar 

  63. Hirakawa T, Nosaka Y. Properties of O ·−2 and OH· formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir, 2002, 18: 3247–3254

    Article  CAS  Google Scholar 

  64. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B, 2003, 107: 4545–4549

    Article  CAS  Google Scholar 

  65. Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graff G, Liu J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J Power Sources, 2009, 192: 588–598

    Article  CAS  Google Scholar 

  66. Arico AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijc WV. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4: 366–377

    Article  CAS  Google Scholar 

  67. Panduwinata D, Gale JD. A first principles investigation of lithium intercalation in TiO2-B. J Mater Chem, 2009, 19: 3931–3940

    Article  CAS  Google Scholar 

  68. Arrouvel C, Parker SC, Islam MS. Lithium insertion and transport in the TiO2-B anode material: a computational study. Chem Mater, 2009, 21: 4778–4783

    Article  CAS  Google Scholar 

  69. Guo Y-G, Hu J-S, Wan L-J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 2008, 20: 2878–2887

    Article  CAS  Google Scholar 

  70. Wang G, Wang Q, Lu W, Li J. Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors. J Phys Chem B, 2006, 110: 22029–22034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DongSheng Xu or JianMing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D., Li, J., Yu, Y. et al. From titanates to TiO2 nanostructures: Controllable synthesis, growth mechanism, and applications. Sci. China Chem. 55, 2334–2345 (2012). https://doi.org/10.1007/s11426-012-4674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4674-y

Keywords

Navigation