Skip to main content
Log in

Progress in the development of techniques based on light scattering for single nanoparticle detection

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nanoparticles have recently attracted extensive attention in view of their great potential in biomedicine and bioanalytical applications. Single particle detection via light scattering offers a simple and efficient approach for the size, size distribution, and concentration analysis of nanoparticles. In particular, intrinsic heterogeneity or rare events masked by ensemble averaging can be revealed. However, the sixth power dependence of Rayleigh scattering on particle size makes it very challenging to detect individual nanoparticles of small sizes. This article is intended to provide an overview of recent progress in the development of techniques based on light scattering for the detection of single nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol, 2003, 21: 1184–1191

    Article  CAS  Google Scholar 

  2. Penn SG, He L, Natan MJ. Nanoparticles for bioanalysis. Curr Opin Chem Biol, 2003, 7: 609–615

    Article  CAS  Google Scholar 

  3. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov, 2008, 7: 771–782

    Article  CAS  Google Scholar 

  4. Knopp D, Tang DP, Niessner R. Review: Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal Chim Acta, 2009, 647: 14–30

    Article  CAS  Google Scholar 

  5. Perez-Lopez B, Merkoci A. Nanoparticles for the development of improved (bio)sensing systems. Anal Bioanal Chem, 2011, 399: 1577–1590

    Article  CAS  Google Scholar 

  6. Biswas A, Wang T, Biris AS. Single metal nanoparticle spectroscopy: Optical characterization of individual nanosystems for biomedical applications. Nanoscale, 2010, 2: 1560–1572

    Article  CAS  Google Scholar 

  7. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular Biology of The Cell. New York: Garland Science, 2002

    Google Scholar 

  8. Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, Roda A. Field-flow fractionation in bioanalysis: A review of recent trends. Anal Chim Acta, 2009, 635: 132–143

    Article  CAS  Google Scholar 

  9. Williams SKR, Cinque L, Shiundu PM. Size determination of nanoparticles used in coatings. In Fernando RH, Sung L-P, eds. Nanotechnology applications in coatings. ACS Symposium Series, 2009, 1008: 373–395

  10. Transfiguracion J, Mena JA, Aucoin MG, Kamen AA. Development and validation of a HPLC method for the quantification of baculovirus particles. J Chromatogr B, 2011, 879: 61–68

    Article  CAS  Google Scholar 

  11. van Gaal EV, Spierenburg G, Hennink WE, Crommelin DJ, Mastrobattista E. Flow cytometry for rapid size determination and sorting of nucleic acid containing nanoparticles in biological fluids. J Control Release, 2010, 141: 328–338

    Article  Google Scholar 

  12. Octeau V, Cognet L, Duchesne L, Lasne D, Schaeffer N, Fernig DG, Lounis B. Photothermal absorption correlation spectroscopy. ACS Nano, 2009, 3: 345–350

    Article  CAS  Google Scholar 

  13. Coulter WH. Means for Counting Particles Suspended in a Fluid. US Patent, 2656508, 1953

  14. Zhang HP, Chon CH, Pan XX, Li DQ. Methods for counting particles in microfluidic applications. Microfluidics and Nanofluidics, 2009, 7: 739–749

    Article  CAS  Google Scholar 

  15. Saleh OA, Sohna LL. Quantitative sensing of nanoscale colloids using a microchip coulter counter. Rev Sci Instrum, 2001, 72: 4449–4451

    Article  CAS  Google Scholar 

  16. Uram JD, Ke K, Hunt AJ, Mayer M. Submicrometer pore-based characterization and quantification of antibody-virus interactions. Small, 2006, 2: 967–972

    Article  CAS  Google Scholar 

  17. Fraikin JL, Teesalu T, McKenney CM, Ruoslahti E, Cleland A. A high-throughput label-free nanoparticle analyser. Nat Nanotech, 2011, doi:10.1038/nnano.2011.24, in press

  18. Lindfors K, Kalkbrenner T, Stoller P, Sandoghdar V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys Rev Lett, 2004, 93: 037401

    Article  CAS  Google Scholar 

  19. Ignatovich FV, Topham D, Novotny L. Optical detection of single nanoparticles and viruses. IEEE J Sel Top Quant, 2006, 12: 1292–1300

    Article  CAS  Google Scholar 

  20. Moerner WE. New directions in single-molecule imaging and analysis. Proc Natl Acad Sci USA, 2007, 104: 12596–12602

    Article  CAS  Google Scholar 

  21. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T. Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem, 2008, 77: 51–76

    Article  CAS  Google Scholar 

  22. Arbouet A, Christofilos D, Del Fatti N, Vallee F, Huntzinger JR, Arnaud L, Billaud P, Broyer M. Direct measurement of the single-metal-cluster optical absorption. Phys Rev Lett, 2004, 93: 127401

    Article  CAS  Google Scholar 

  23. Billaud P, Huntzinger JR, Cottancin E, Lerme J, Pellarin M, Arnaud L, Broyer M, Del Fatti N, Vallee F. Optical extinction spectroscopy of single silver nanoparticles. Eur Phys J D, 2007, 43: 271–274

    Article  CAS  Google Scholar 

  24. Tokeshi M, Uchida M, Hibara A, Sawada T, Kitamori T. Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: Subsingle molecule determination. Anal Chem, 2001, 73: 2112–2116

    Article  CAS  Google Scholar 

  25. Boyer D, Tamarat P, Maali A, Lounis B, Orrit M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science, 2002, 297: 1160–1163

    Article  CAS  Google Scholar 

  26. Berciaud S, Cognet L, Blab GA, Lounis B. Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys Rev Lett, 2004, 93: 257402

    Article  Google Scholar 

  27. Berciaud S, Lasne D, Blab GA, Cognet L, Lounis B. Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment. Phys Rev B, 2006, 73: 045424

    Article  Google Scholar 

  28. Blab GA, Cognet L, Berciaud S, Alexandre I, Husar D, Remacle J, Lounis B. Optical readout of gold nanoparticle-based DNA microarrays without silver enhancement. Biophys J, 2006, 90: L13–L15

    Article  CAS  Google Scholar 

  29. Lasne D, Blab GA, Berciaud S, Heine M, Groc L, Choquet D, Cognet L, Lounis B. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys J, 2006, 91: 4598–4604

    Article  CAS  Google Scholar 

  30. Pamme N, Koyama R, Manz A. Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: Application to a particle-enhanced immunoassay. Lab Chip, 2003, 3: 187–192

    Article  CAS  Google Scholar 

  31. Kummrow A, Theisen J, Frankowski M, Tuchscheerer A, Yildirim H, Brattke K, Schmidt M, Neukammer J. Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining. Lab Chip, 2009, 9: 972–981

    Article  CAS  Google Scholar 

  32. Chen HT, Wang YN. Optical microflow cytometer for particle counting, sizing and fluorescence detection. Microfluid Nanofluid, 2009, 6: 529–537

    Article  Google Scholar 

  33. Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications — I. Theory. Anal Biochem, 1998, 262: 137–156

    Article  CAS  Google Scholar 

  34. Weaver JH, Frederikse HPR, In Lide DR, Frederiske HPR. CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press, 1994–1995, 12-117–112-140

    Google Scholar 

  35. Huang T, Nallathamby PD, Gillet D, Xu XH. Design and synthesis of single-nanoparticle optical biosensors for imaging and characterization of single receptor molecules on single living cells. Anal Chem, 2007, 79: 7708–7718

    Article  CAS  Google Scholar 

  36. Takamura T, Sasano Y, Hayasaka T. Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements. Appl Optics, 1994, 33: 7132–7140

    Article  CAS  Google Scholar 

  37. Kerker M. Light scattering instrumentation for aerosol studies: An historical overview. Aerosol Sci Technol, 1997, 27: 522–540

    Article  CAS  Google Scholar 

  38. Gucker FT, Jr., Pickard HB, O’Konski CT. A photoelectric instrument for comparing the concentrations of very dilute aerosols, and measuring low light intensities. J Am Chem Soc, 1947, 69: 429–438

    Article  CAS  Google Scholar 

  39. Fabiny L. Sensing rogue particles with optical scattering. Optics and Photonics News, 1998, 35–38

  40. Cai Y, Montague DC, Mooiweer-Bryan W, Deshler T. Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: Laboratory and field studies. J Aerosol Sci, 2008, 39: 759–769

    Article  CAS  Google Scholar 

  41. Shapiro HM. Practical Flow Cytometry. 4th ed. New Jersey: Wiley-Liss, 2003

    Book  Google Scholar 

  42. Nakamura M, Ishimura K. Rapid size evaluation of nanoparticles using flow cytometry. Adv Sci Lett, 2010, 3: 130–137

    CAS  Google Scholar 

  43. Pike ER, Abbiss JB. Light Scattering and Photon Correlation Spectroscopy. Boston: Kluwer Academic Publishers, 1997

    Google Scholar 

  44. Maeda T, Fujime S. Quasielastic light scattering under optical microscope. Rev Sci Instrum, 1972, 43: 556–557

    Article  Google Scholar 

  45. Herbert TJ, Acton JD. Photon correlation spectroscopy of light scattered from microscopic regions. Appl Opt, 1979, 18: 588–590

    Article  CAS  Google Scholar 

  46. Nishio I, Tanaka T, Sun ST, Imanishi Y, Ohnishi ST. Hemoglobin aggregation in single red blood cells of sickle cell anemia. Science, 1983, 220: 1173–1175

    Article  CAS  Google Scholar 

  47. Peetermans J, Nishio I, Ohnishi ST, Tanaka T. Light-scattering study of depolymerization kinetics of sickle hemoglobin polymers inside single erythrocytes. Proc Natl Acad Sci USA, 1986, 83: 352–356

    Article  CAS  Google Scholar 

  48. Blank PS, Tishler RB, Carlson FD. Quasielastic light scattering microscope spectrometer. Appl Opt, 1987, 26: 351–356

    Article  CAS  Google Scholar 

  49. Kaplan PD, Trappe V, Weitz DA. Light-scattering microscope. Appl Opt, 1999, 38: 4151–4157

    Article  CAS  Google Scholar 

  50. Wang JC. Design and testing of a novel microscopic photon correlation spectrometer with higher accuracy. J Opt A-Pure Appl Opt, 2001, 3: 360–365

    Article  Google Scholar 

  51. Kuyper CL, Budzinski KL, Lorenz RM, Chiu DT. Real-time sizing of nanoparticles in microfluidic channels using confocal correlation spectroscopy. J Am Chem Soc, 2006, 128: 730–731

    Article  CAS  Google Scholar 

  52. Kuyper CL, Fujimoto BS, Zhao YQ, Schiro PG, Chiu DT. Accurate sizing of nanoparticles using confocal correlation spectroscopy. J Phys Chem B, 2006, 110: 24433–24441

    Article  CAS  Google Scholar 

  53. Dong HJ, Ye FM, Higgins DA, Collinson MM. Following the growth process in macroporous methylsilsesquioxane films at the single macropore level by confocal correlation spectroscopy. Chem Mater, 2007, 19: 6528–6535

    Article  CAS  Google Scholar 

  54. Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res, 2010, 27: 796–810

    Article  CAS  Google Scholar 

  55. Carr B, Hole P, Malloy A, Nelson P, Wright M, Smith J. Applications of nanoparticle tracking analysis in nanoparticle research-a mini-review. Euro J Parenter Pharm Sci, 2009, 14: 45–50

    Google Scholar 

  56. Brzana A, Carr B, Wright M, Malloy A, Hole P, Smith J. The real-time and direct multi-parameter analysis of individual nanoparticles in solution. Nanocon 2009, Roznov pod Radhostem, Czech Republic, EU, 2009. 34–40

  57. Malloy A, Carr B. Nanoparticle tracking analysis—The Halo (TM) system. Part Part Syst Charact, 2006, 23: 197–204

    Article  Google Scholar 

  58. Saveyn H, De Baets B, Thas O, Hole P, Smith J, Van der Meeren P. Accurate particle size distribution determination by nanoparticle tracking analysis based on 2-D Brownian dynamics simulation. J Colloid Interface Sci, 2010, 352: 593–600

    Article  CAS  Google Scholar 

  59. Bromley KM, Patil AJ, Perriman AW, Stubbs G, Mann S. Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. J Mater Chem, 2008, 18: 4796–4801

    Article  CAS  Google Scholar 

  60. Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis, 2008, 23: 377–382

    Article  CAS  Google Scholar 

  61. Lundhal P, Stokes R, Smith E, Martin R, Graham D. Synthesis and characterisation of monodispersed silver nanoparticles with controlled size ranges. Micro Nano Lett, 2008, 3: 62–65

    Article  Google Scholar 

  62. Zhunuspayev DE, Mun GA, Hole P, Khutoryanskiy VV. Solvent effects on the formation of nanoparticles and multilayered coatings based on hydrogen-bonded interpolymer complexes of poly(acrylic acid) with homo- and copolymers of N-Vinyl pyrrolidone. Langmuir, 2008, 24: 13742–13747

    Article  CAS  Google Scholar 

  63. Neville F, Pchelintsev NA, Broderick MJF, Gibson T, Millner PA. Novel one-pot synthesis and characterization of bioactive thiol-silicate nanoparticles for biocatalytic and biosensor applications. Nanotechnology, 2009, 20: 11

    Article  Google Scholar 

  64. Dovichi NJ, Martin JC, Jett JH, Keller RA. Attogram detection limit for aqueous dye samples by laser-induced fluorescence. Science, 1983, 219: 845–847

    Article  CAS  Google Scholar 

  65. Keller RA, Ambrose WP, Goodwin PM, Jett JH, Martin JC, Wu M. Single-molecule fluorescence analysis in solution. Appl Spectrosc, 1996, 50: 12A–32A

    Article  CAS  Google Scholar 

  66. Ambrose WP, Goodwin PM, Jett JH, Van Orden A, Werner JH, Keller RA. Single molecule fluorescence spectroscopy at ambient temperature. Chem Rev, 1999, 99: 2929–2956

    Article  CAS  Google Scholar 

  67. Yan XM, Grace WK, Yoshida TM, Habbersett RC, Velappan N, Jett JH, Keller RA, Marrone BL. Characteristics of different nucleic acid staining dyes for DNA fragment sizing by flow cytometry. Anal Chem, 1999, 71: 5470–5480

    Article  CAS  Google Scholar 

  68. Habbersett RC, Jett JH. An analytical system based on a compact flow cytometer for DNA fragment sizing and single-molecule detection. Cytometry A, 2004, 60: 125–134

    Article  Google Scholar 

  69. Zarrin F, Bornhop DJ, Dovichi NJ. Laser Doppler velocimetry for particle size determination by light scatter within the sheath flow cuvette. Anal Chem, 1987, 59: 854–860

    Article  CAS  Google Scholar 

  70. Yang LL, Zhu SB, Hang W, Yan XM. Development of a single-molecule flow analyzer. Chem J Chinese U, 2008, 29: 1549–1 551

    CAS  Google Scholar 

  71. Yang LL, Zhu SB, Hang W, Wu LN, Yan XM. Development of an ultrasensitive dual-channel flow cytometer for the individual analysis of nanosized particles and biomolecules. Anal Chem, 2009, 81: 2555–2563

    Article  CAS  Google Scholar 

  72. Yang LL, Wu LN, Zhu SB, Long Y, Hang W, Yan XM. Rapid, absolute, and simultaneous quantification of specific pathogenic strain and total bacterial cells using an ultrasensitive dual-color flow cytometer. Anal Chem, 2010, 82: 1109–1116

    Article  CAS  Google Scholar 

  73. Zhu SB, Yang LL, Long Y, Gao M, Huang TX, Hang W, Yan XM. Size differentiation and absolute quantification of gold nanoparticles via single particle detection with a laboratory-built high-sensitivity flow cytometer. J Am Chem Soc, 2010, 132: 12176–12178

    Article  CAS  Google Scholar 

  74. Van Orden A, Cai H, Goodwin PM, Keller RA. Efficient detection of single DNA fragments in flowing sample streams by two photon fluorescence excitation. Anal Chem, 1999, 71: 2108–2116

    Article  Google Scholar 

  75. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B, 2006, 110: 7238–7248

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoMei Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Wang, S., Yang, L. et al. Progress in the development of techniques based on light scattering for single nanoparticle detection. Sci. China Chem. 54, 1244–1253 (2011). https://doi.org/10.1007/s11426-011-4313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4313-z

Keywords

Navigation