Skip to main content
Log in

Nanoparticles for the development of improved (bio)sensing systems

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanoparticles serve as fundamental building blocks for nanobiotechnology, especially in several applications in the development of novel (bio)sensing systems. Nanoparticles can be used for modification of the surfaces of (bio)sensing transducers or as optical or electroactive labels to improve different aspects of performance, for example sensitivity, detection limit, multidetection capability, and response stability. Nanoparticles can be integrated into the transducer materials on an individual basis or inside other matrices to ensure the immobilization of recognition biomolecules and/or receptors which are the principal components of the (bio)sensing systems. Incorporation of nanoparticles into optical and electrochemical (bio)sensing systems, including their use in microfluidic based systems has the advantages of enabling the design of robust, easy to use, portable, and cost-effective devices.

The various detection platforms opportunities ranging from electrochemical, optical including the integrated microfluidics offered by nanoparticles so as to improve (bio)sensing systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Spring-Verlag, Berlin

    Google Scholar 

  2. Merkoçi A, Pumera M, Llopis X, Pérez B, Del Valle M, Alegret S (2005) Trends Anal Chem 24:826–838

    Article  CAS  Google Scholar 

  3. Pandey P, Singh SP, Arya SK, Gupta V, Datta M, Singh S, Malhotra BD (2007) Langmuir 23:3333–3337

    Article  CAS  Google Scholar 

  4. Willner I, Basnar B, Willner B (2007) FEBS J 274:302–309

    Article  CAS  Google Scholar 

  5. Castañeda MT, Merkoçi A, Pumera M, Alegret S (2007) Biosens Bioelectron 22:1961–1969

    Article  CAS  Google Scholar 

  6. De la Escosura-Muñiz A, Merkoçi A (2010) Expert Opin Med Diagn 4:21–37

    Article  CAS  Google Scholar 

  7. Lin Y-H, Chen S-H, Chuang Y-C, Lu Y-C, Shen TY, Chang CA, Lin C-S (2008) Biosens Bioelectron 23:1832–1837

    Article  CAS  Google Scholar 

  8. Antiochia R, Lavagnini I, Magno F (2004) Anal Lett 37:1657–1669

    Article  CAS  Google Scholar 

  9. Ozdemir C, Yeni F, Odaci D, Timur S (2010) Food Chem 119:380–385

    Article  CAS  Google Scholar 

  10. Pingarrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Electrochim Acta 53:5848–5866

    Article  CAS  Google Scholar 

  11. Yáñez-Sedeño P, Pingarrón JM (2005) Anal Bioanal Chem 382:884–886

    Article  CAS  Google Scholar 

  12. Liu S, Leech D, Ju H (2003) Anal Lett 36:1–19

    Article  CAS  Google Scholar 

  13. Guo S, Wang E (2007) Anal Chim Acta 598:181–192

    Article  CAS  Google Scholar 

  14. Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001) J Vac Sci Technol B 19:1091–1103

    Article  CAS  Google Scholar 

  15. Somorjai G (2004) Nature 430:730

    Article  CAS  Google Scholar 

  16. Luo X, Morrin A, Killard AJ, Smyth (2006) Electroanal 18(4):319–326

    Article  CAS  Google Scholar 

  17. Hrapovic S, Liu Y, Male KB, Luong JHT (2004) Anal Chem 76:1083–1088

    Article  CAS  Google Scholar 

  18. Chen H, Yuan R, Chai Y, Wang J, Li W (2010) Biotechnol Lett 32(10):1401–1404

    Google Scholar 

  19. Kang X, Mai Z, Zou X, Cai P, Mo J (2008) Talanta 74(4):879–886

    Article  CAS  Google Scholar 

  20. Attand GS, Barlett PN, Coleman NRB, Elliot JM, Owen JR, Wang JH (1997) Science 278:838–840

    Article  Google Scholar 

  21. Joanne ME, Peter RB, Philip NB, George SA (1999) Langmuir 15:7411–7415

    Article  CAS  Google Scholar 

  22. Ikariyama Y, Yamauchi S, Yukiashi T, Ushioda H (1988) J Electroanal Chem 251:267–274

    Article  CAS  Google Scholar 

  23. Penn SG, He L, Natan MJ (2003) Curr Opin Chem Biol 7:609–615

    Article  CAS  Google Scholar 

  24. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Coord Chem Rev 249:1870–1901

    Article  CAS  Google Scholar 

  25. Haun JB, Yoon T-J, Lee H, Weissleder R (2010) Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(3):291–304

    CAS  Google Scholar 

  26. Faraday M (1857) Philos Trans R Soc 147:145–181

    Article  Google Scholar 

  27. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  28. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607–609

    Article  CAS  Google Scholar 

  29. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  30. Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoçi A (2007) Anal Chem 79:5232–5240

    Article  CAS  Google Scholar 

  31. Ackerson CJ, Jadzinsky PD, Jensen GJ, Kornberg RD (2006) J Am Chem Soc 128:2635–2640

    Article  CAS  Google Scholar 

  32. Stoeva SI, Lee JS, Smith JE, Rosen ST, Mirkin CA (2006) J Am Chem Soc 128:8378–8379

    Article  CAS  Google Scholar 

  33. Ambrosi A, Airò F, Merkoçi A (2010) Anal Chem 82:1151–1156

    Article  CAS  Google Scholar 

  34. Deshpande SS (1996) Enzyme immunoassays: from concept to product development. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  35. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Anal Chem 80:1067–1072

    Article  CAS  Google Scholar 

  36. Zhu X, Liu Y, Yang J, Liang Z, Genxi Li (2010) Biosens Bioelectron 25:2135–2139

    Article  CAS  Google Scholar 

  37. Lakowicz JR (1999) Plenum Press, New York

  38. Lessard-Viger M, Rioux M, Rainville L, Boudreau D (2009) Nanoletters 9(8):3066–3071

    CAS  Google Scholar 

  39. Knopp D, Tang D, Niessner R (2009) Anal Chim Acta 647:14–30

    Article  CAS  Google Scholar 

  40. Gao D, Wang Z, Liu B, Ni L, Wu M, Zhang Z (2008) Anal Chem 80:8545–8553

    Article  CAS  Google Scholar 

  41. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544

    Article  CAS  Google Scholar 

  42. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  43. Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger P-Y, Geissbüler I, Demurtas D, Dubochet J, Vogel H (2006) Angew Chem Int Ed 45:5478–5483

    Article  CAS  Google Scholar 

  44. Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW (2005) Proc Natl Acad Sci USA 102:14284–14289

    Article  CAS  Google Scholar 

  45. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nat Mater 2:630–638

    Article  CAS  Google Scholar 

  46. Chu TC, Shieh F, Lavery LA, Levy M, Richards-Kortum R, Korgel BA, Ellington AD (2006) Biosens Bioelectron 21:1859–1866

    Article  CAS  Google Scholar 

  47. Young SH, Rozengurt E (2006) Am J Physiol Cell Physiol 290:C728–C732

    Article  CAS  Google Scholar 

  48. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Nano Lett 7(10):3065–3070

    Article  CAS  Google Scholar 

  49. Albers AE, Okreglak VS, Chang CJ (2006) J Am Chem Soc 128:9640–9641

    Article  CAS  Google Scholar 

  50. Myong S, Rasnik I, Joo C, Lohman TM, Ha T (2006) Nature 437:1321–1325

    Article  CAS  Google Scholar 

  51. Schlücker S (2009) Chem Phys Chem 10:1344–1354

    Google Scholar 

  52. Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp R (2006) Nano Lett 6:2630–2636

    Article  CAS  Google Scholar 

  53. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Annu Rev Anal Chem 1:601–626

    Article  CAS  Google Scholar 

  54. Schlüker S (2009) Chem Phys Chem 10:1344–1354

    Google Scholar 

  55. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanan R (2008) Chem Soc Rev 37:1001–1011

    Article  CAS  Google Scholar 

  56. Doering WE, Piotti ME, Natan MJ (2007) Adv Mater 19:3100–3108

    Article  CAS  Google Scholar 

  57. Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) Nat Biotechnol 26:83–90

    Article  CAS  Google Scholar 

  58. Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  59. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie SM (2007) Nat Biotechnol 25:1165–1170

    Article  CAS  Google Scholar 

  60. Scodeller P, Flexer V, Szamocki R, Calvo EJ, Tognalli N, Troiani H, Fainstein A (2008) J Am Chem Soc 130(38):12690–12697

    Article  CAS  Google Scholar 

  61. Jain RK (1999) Annu Rev Biomed Eng 1:241–263

    Article  CAS  Google Scholar 

  62. Matsumura Y, Maeda H (1986) Cancer Res 46:6387–6392

    CAS  Google Scholar 

  63. Merchant B (1998) Biologicals 26:49–59

    Article  CAS  Google Scholar 

  64. Root SW, Andrews GA, Kniseley RM, Tyor MP (1954) Cancer 7:856–866

    Article  CAS  Google Scholar 

  65. Paciotti GF, Kingston DGI, Tamarkin L (2006) Drug Dev Res 67:47–54

    Article  CAS  Google Scholar 

  66. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Drug Deliv 11:169–183

    Article  CAS  Google Scholar 

  67. James WD, Hirsch LR, West JL, O’Neal PD, Payne JD (2007) J Radioanal Nucl Chem 271:455–459

    Article  CAS  Google Scholar 

  68. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) Science 304:1497–1500

    Article  CAS  Google Scholar 

  69. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) N Engl J Med 350:2129–2139

    Article  CAS  Google Scholar 

  70. Driskell JD, Uhlenkamp JM, Lipert RJ, Porter MD (2007) Anal Chem 79:4141–4148

    Article  CAS  Google Scholar 

  71. Yakes BJ, Lipert RJ, Bannantine JP, Porter MD (2008) Clin Vaccine Immunol 15(2):227–234

    Article  CAS  Google Scholar 

  72. Novotny L, Hecht B (2006) Cambridge University Press. UK, Cambridge

    Google Scholar 

  73. Merkoçi A (2009) Biosensing using nanomaterials, Wiley series in nanoscience and nanotechnology. A John Wiley and Sons, Inc, Publication

  74. Liedberg B, Nylander C, Lundstrom I (1983) Sens Actuators 4:299–304

    Article  CAS  Google Scholar 

  75. De la Escosura-Muñiz A, Parolo C, Merkoçi A (2010) Mater Today 13(7–8):24–34

    Article  Google Scholar 

  76. Fendler JH (2005) Wiley-VCH. Weinheim, Germany, pp 279–293

    Google Scholar 

  77. Kalele SA, Kundu AA, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2006) Small 2(3):335–338

    Article  CAS  Google Scholar 

  78. Vaskevich A, Rubinstein I (2007) Handbook of biosensors and biochips. Wiley, Chichester, 1

    Google Scholar 

  79. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Am Chem Soc 123:471–1482

    Article  CAS  Google Scholar 

  80. Yonzon CR, Jeoung E, Schatz ZS, GC MM, Van Duyne RP (2004) J Am Chem Soc 126:12669–12676

    Article  CAS  Google Scholar 

  81. Haes AJ, Van Duyne RP (2002) J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  82. Riboh JC, Haes AJ, McFarland AD, Yonzon CR, Van Duyne RP (2003) J Phys Chem B 107:1772–1780

    Article  CAS  Google Scholar 

  83. Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP (2006) Nanomedicine 1(2):219–228

    Article  CAS  Google Scholar 

  84. Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E (2005) Anal Chem 77:6976–6984

    Article  CAS  Google Scholar 

  85. Hill SJ (1999) Sheffield Academic Press, Poole, UK

  86. Ammann AA (2007) J Mass Spectrom 42:419–427

    Article  CAS  Google Scholar 

  87. Merkoçi A, Aldavert M, Tarrasón G, Eritja R, Alegret S (2005) Anal Chem 77:6500–6503

    Article  CAS  Google Scholar 

  88. Merkoçi A, Allabashi R, De la Escosura-Muñiz A (2009) Inductively coupled plasma mass spectroscopy of nanoparticles. New horizons for biosensing applications, chapter 12. In: Merkoçi A (ed) Biosensing using nanomaterials, Wiley series in nanoscience and nanotechnology. A John Wiley & Sons, Inc, Publication

  89. Hu S, Zhang S, Hu Z, Xing Z, Zhang X (2007) Anal Chem 79:923–929

    Article  CAS  Google Scholar 

  90. De la Escosura-Muñiz A, Ambrosi A, Merkoçi A (2008) Trends Anal Chem 27(7):568–584

    Article  CAS  Google Scholar 

  91. Dungchaia W, Siangprohb W, Chaicumpac W, Tongtawed P, Chailapakula O (2008) Talanta 77:727–732

    Article  CAS  Google Scholar 

  92. Zhang X, Geng P, Liu H, Teng Y, Liu Y, Wang Q, Zhang W, Jin L, Jiang L (2009) Biosens Bioelectron 24:2155–2159

    Article  CAS  Google Scholar 

  93. Pumera M, Castañeda MT, Pividori MI, Eritja R, Merkoçi A, Alegret S (2005) Langmuir 21:9625–9629

    Article  CAS  Google Scholar 

  94. Denuault G (2009) Ocean Sci Discuss 6:1857–1893

    Article  Google Scholar 

  95. Koncki R (2007) Anal Chim Acta 599(1):7–15

    Article  CAS  Google Scholar 

  96. Chumbimuni-Torres KY, Dai Z, Rubinova N, Xiang Y, Pretsch E, Wang J, Bakker E (2006) J Am Chem Soc 128:13676–13677

    Article  CAS  Google Scholar 

  97. Thuürer R, Vigassy T, Hirayama M, Wang J, Eric Bakker, Pretsch E (2008) Anal Chem 80(3):707–712

    Article  CAS  Google Scholar 

  98. Kaur J, Singh KV, Boro R, Thampi KR, Raje M, Varshney GC, Suri CR (2007) Environ Sci Technol 41:5028–5036

    Article  CAS  Google Scholar 

  99. Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Biosens Bioelectron 25:224–227

    Article  CAS  Google Scholar 

  100. Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G (2009) Anal Chem 81:1660–1668

    Article  CAS  Google Scholar 

  101. Delmulle BS, De Saeger SM, Sibanda L, Barna-Vetro I, Van Peteghem CH (2005) J Agric Food Chem 53:3364–3368

    Article  CAS  Google Scholar 

  102. Petra SD, Andreas M (2006) Nat Rev Drug Discov 5:210–218

    Article  CAS  Google Scholar 

  103. Weigl BH, Bardell RL, Cabrera CR (2003) Adv Drug Res 55:349–377

    Article  CAS  Google Scholar 

  104. Erickson D, Mandal S, Yang AHJ, Cordovez B (2008) Microfluid Nanofluid 4:33–52

    Article  CAS  Google Scholar 

  105. Yuen PK, Li GS, Bao YJ, Muller UR (2003) Lab Chip 3:46–50

    Article  CAS  Google Scholar 

  106. Huang C, Bonroy K, Reekmans G, Laureyn W, Verhaegen K, De Vlaminck I, Lagae L, Borghs G (2009) Biomed Microdevices 11:893–901

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the MEC (Madrid) for projects MAT2008-03079/NAN, CSD2006-00012 “Nanobiomed” (Consolider-Ingenio 2010) and the Torres Quevedo scholarship (B. Pérez López).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arben Merkoçi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-López, B., Merkoçi, A. Nanoparticles for the development of improved (bio)sensing systems. Anal Bioanal Chem 399, 1577–1590 (2011). https://doi.org/10.1007/s00216-010-4566-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4566-y

Keywords

Navigation