Skip to main content
Log in

Lebesgue points via the Poincaré inequality

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We show that in a Q-doubling space (X, d, µ), Q > 1, which satisfies a chain condition, if we have a Q-Poincaré inequality for a pair of functions (u, g) where gL Q(X), then u has Lebesgue points \(\mathcal{H}^h \)-a.e. for \(h(t) = \log ^{1 - Q - \varepsilon } (1/t)\). We also discuss how the existence of Lebesgue points follows for uW 1,Q(X) where (X, d, µ) is a complete Q-doubling space supporting a Q-Poincaré inequality for Q > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams D R, Hedberg L I. Function Spaces and Potential Theory. Berlin: Springer-Verlag, 1996

    Book  Google Scholar 

  2. Björn J, Onninen J. Orlicz capacities and Hausdorff measures on metric spaces. Math Z, 2005, 251: 131–146

    Article  MathSciNet  Google Scholar 

  3. Cheeger J. Differentiability of Lipschitz functions on metric measure spaces. Geom Funct Anal, 1999, 9: 428–517

    Article  MathSciNet  Google Scholar 

  4. Federer H. Geometric Measure Theory. New York: Springer-Verlag, 1969

    Google Scholar 

  5. Giusti E. Precisazione delle funzioni di H 1,p e singolarit`a delle soluzioni deboli di sistemi ellittici non lineari. Boll Unione Mat Ital (4), 1969, 2: 71–76

    MathSciNet  Google Scholar 

  6. Hajłasz P. Sobolev spaces on an arbitrary metric space. Potential Anal, 1996, 5: 403–415

    MathSciNet  Google Scholar 

  7. Hajłasz P, Koskela P. Sobolev met Poincaré. Mem Amer Math Soc, 2000, 145: x+101

    Google Scholar 

  8. Heinonen J. Lectures on Analysis on Metric Spaces. New York: Springer-Verlag, 2001

    Book  Google Scholar 

  9. Heinonen J, Kilpeläinen T, Martio O. Nonlinear Potential Theory of Degenerate Elliptic Equations. Mineola: Dover Publications, 2006

    Google Scholar 

  10. Heinonen J, Koskela P. Quasiconformal maps in metric spaces with controlled geometry. Acta Math, 1998, 181: 1–61

    Article  MathSciNet  Google Scholar 

  11. Heinonen J, Koskela P, Shanmugalingam N, et al. Sobolev Spaces on Metric Measure Spaces: An Approach Based On Upper Gradients. Cambridge: Cambridge University Press, 2015

    Book  Google Scholar 

  12. Keith S, Zhong X. The Poincaré inequality is an open ended condition. Ann of Math (2), 2008, 167: 575–599

    Article  MathSciNet  Google Scholar 

  13. Khavin V P, Maz’ya V G. Non-linear potential theory. Russian Math Surveys, 1972, 27: 71–148

    Google Scholar 

  14. Kinnunen J, Latvala V. Lebesgue points for Sobolev functions on metric spaces. Rev Mat Iberoamericana, 2002, 18: 685–700

    Article  MathSciNet  Google Scholar 

  15. Korte R. Geometric implications of the Poincaré inequality. Results Math, 2007, 50: 93–107

    Article  MathSciNet  Google Scholar 

  16. Koskela P. Removable sets for Sobolev spaces. Ark Mat, 1999, 37: 291–304

    Article  MathSciNet  Google Scholar 

  17. Koskela P, MacManus P. Quasiconformal mappings and Sobolev spaces. Studia Math, 1998, 131: 1–17

    MathSciNet  Google Scholar 

  18. Malý J, Ziemer W P. Fine Regularity of Solutions of Elliptic Partial Differential Equations. Providence, RI: Amer Math Soc, 1997

    Book  Google Scholar 

  19. Müller D, Yang D. A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces. Forum Math, 2009, 21: 259–298

    Article  MathSciNet  Google Scholar 

  20. Rauch H E. Harmonic and analytic functions of several variables and the maximal theorem of Hardy and Littlewood. Canad J Math, 1956, 8: 171–183

    Article  MathSciNet  Google Scholar 

  21. Rogers C A. Hausdorff Measures. Cambridge: Cambridge University Press, 1998

    Google Scholar 

  22. Shanmugalingam N. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev Mat Iberoamericana, 2000, 16: 243–279

    Article  MathSciNet  Google Scholar 

  23. Smith K T. A generalization of an inequality of Hardy and Littlewood. Canad J Math, 1956, 8: 157–170

    Article  MathSciNet  Google Scholar 

  24. Yang D, Zhou Y. New properties of Besov and Triebel-Lizorkin spaces on RD-spaces. Manuscripta Math, 2011, 134: 59–90

    Article  MathSciNet  Google Scholar 

  25. Ziemer W P. Weakly Differentiable Functions. New York: Springer-Verlag, 1989

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nijjwal Karak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karak, N., Koskela, P. Lebesgue points via the Poincaré inequality. Sci. China Math. 58, 1697–1706 (2015). https://doi.org/10.1007/s11425-015-5001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5001-9

Keywords

MSC(2010)

Navigation