Skip to main content
Log in

Absolutely continuous mappings on doubling metric measure spaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We consider Q-absolutely continuous mappings \(f:X\rightarrow V\) between a doubling metric measure space X and a Banach space V. The relation between these mappings and Sobolev mappings \(f\in N^{1,p}(X;V)\) for \(p\ge Q\ge 1\) is investigated. In particular, a locally Q-absolutely continuous mapping on an Ahlfors Q-regular space is a continuous mapping in \(N^{1,Q}_\textrm{loc}\,(X;V)\), as well as differentiable almost everywhere in terms of Cheeger derivatives provided V satisfies the Radon-Nikodym property. Conversely, though a continuous Sobolev mapping \(f\in N^{1,Q}_\textrm{loc}\,(X;V)\) is generally not locally Q-absolutely continuous, this implication holds if f is further assumed to be pseudomonotone. It follows that pseudomonotone mappings satisfying a relaxed quasiconformality condition are also Q-absolutely continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balogh, Z., Koskela, P., Rogovin, S.: Absolute continuity of quasiconformal mappings on curves. Geom. Funct. Anal. 17(3), 645–664 (2007)

    Article  MathSciNet  Google Scholar 

  2. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, vol. 17, pp. xii+403. European Mathematical Society (EMS), Zürich (2011)

  3. Björn, A., Björn, J.: Poincaré inequalities and Newtonian Sobolev functions on noncomplete metric spaces. J. Differ. Equ. 266(1), 44–69 (2019)

    Article  Google Scholar 

  4. Bongiorno, D.: Absolutely continuous functions in \({\mathbb{R} }^n\). J. Math. Anal. Appl. 303(1), 119–134 (2005)

    Article  MathSciNet  Google Scholar 

  5. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  Google Scholar 

  6. Cheeger, J., Kleiner, B.: Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodym property. Geom. Funct. Anal. 19(4), 1017–1028 (2009)

    Article  MathSciNet  Google Scholar 

  7. Gehring, F.W.: The definitions and exceptional sets for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I(281), 28 (1960)

    MathSciNet  Google Scholar 

  8. Gehring, F.W.: Rings and quasiconformal mappings in space. Trans. Am. Math. Soc. 103, 353–393 (1962)

    Article  MathSciNet  Google Scholar 

  9. Hajłasz, P.: Sobolev spaces on metric-measure spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), vol. 338. Contemporary Mathematics, pp. 173–218. Amer. Math. Soc., Providence (2003)

  10. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), 101 (2000)

    Google Scholar 

  11. Hajłasz, P., Zhou, X.: Sobolev embedding of a sphere containing an arbitrary Cantor set in the image. Geom. Dedicata 184, 159–173 (2016)

    Article  MathSciNet  Google Scholar 

  12. Heikkinen, T., Koskela, P., Tuominen, H.: Sobolev-type spaces from generalized Poincaré inequalities. Studia Math. 181(1), 1–16 (2007)

    Article  MathSciNet  Google Scholar 

  13. Heinonen, J.: Lectures on Analysis on Metric Spaces, p. 140. Springer, New York (2001)

    Book  Google Scholar 

  14. Heinonen, J., Koskela, P.: Definitions of quasiconformality. Invent. Math. 120(1), 61–79 (1995)

    Article  MathSciNet  Google Scholar 

  15. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

    Article  MathSciNet  Google Scholar 

  16. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85, 87–139 (2001)

    Article  MathSciNet  Google Scholar 

  17. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev spaces on metric measure spaces, an approach based on upper gradients. In: New Mathematical Monographs, vol. 27, pp. xii+434. Cambridge University Press, Cambridge (2015)

  18. Hencl, S.: On the notions of absolute continuity for functions of several variables. Fund. Math. 173(2), 175–189 (2002)

    Article  MathSciNet  Google Scholar 

  19. Hencl, S., Koskela, P.: Lectures on Mappings of Finite Distortion. Lecture Notes in Mathematics, vol. 2096, p. xii+176. Springer, Cham (2014)

    Google Scholar 

  20. Kallunki, S., Koskela, P.: Exceptional sets for the definition of quasiconformality. Am. J. Math. 122(4), 735–743 (2000)

    Article  MathSciNet  Google Scholar 

  21. Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. (2) 167(2), 575–599 (2008)

    Article  MathSciNet  Google Scholar 

  22. Koskela, P., Malý, J., Zürcher, T.: Luzin’s condition (N) and Sobolev mappings. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 23(4), 455–465 (2012)

    MathSciNet  Google Scholar 

  23. Lahti, P., Zhou, X.: Metric quasiconformality and Sobolev regularity in non-Ahlfors regular spaces, preprint (2021). arXiv:2109.01260v2

  24. Malý, J.: Absolutely continuous functions of several variables. J. Math. Anal. Appl. 231(2), 492–508 (1999)

    Article  MathSciNet  Google Scholar 

  25. Malý, J., Martio, O.: Lusin’s condition (N) and mappings of the class \(W^{1, n}\). J. Reine Angew. Math. 458, 19–36 (1995)

    MathSciNet  Google Scholar 

  26. Marola, N., Ziemer, W.: Aspects of area formulas by way of Lusin, Radó, and Reichelderfer on metric measure spaces. J. Math. Soc. Japan 67(2), 561–579 (2015)

    Article  MathSciNet  Google Scholar 

  27. Wildrick, K., Zürcher, T.: Sharp differentiability results for the lower local Lipschitz constant and applications to non-embedding. J. Geom. Anal. 25(4), 2590–2616 (2015)

    Article  MathSciNet  Google Scholar 

  28. Williams, M.: Dilatation, pointwise Lipschitz constants, and condition N on curves. Michigan Math. J. 63(4), 687–700 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zhou, X.: Absolutely continuous functions on compact and connected 1-dimensional metric spaces. Ann. Acad. Sci. Fenn. Math. 44(1), 281–291 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the referee for the careful reading of the paper and for the comments and suggestions which helped to improve the exposition of the paper. The work of the second author was supported by JSPS Grant-in-Aid for Early-Career Scientists (No. 22K13947).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panu Lahti.

Ethics declarations

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahti, P., Zhou, X. Absolutely continuous mappings on doubling metric measure spaces. manuscripta math. 173, 1–21 (2024). https://doi.org/10.1007/s00229-023-01460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-023-01460-z

Mathematics Subject Classification

Navigation