Skip to main content
Log in

Enracinement or the earth, the originary ark, does not move: on the phenomenological (historical and ontogenetic) origin of common and scientific sense and the genetic method of teaching (for) understanding

  • Published:
Cultural Studies of Science Education Aims and scope Submit manuscript

Abstract

For many students, the experience with science tends to be alienating and uprooting. In this study, I take up Simone Weil’s concepts of enracinement (rooting) and déracinement (uprooting) to theorize the root of this alienation, the confrontation between children’s familiarity with the world and unfamiliar/strange scientific conceptions. I build on the works of the phenomenological philosopher Edmund Husserl and the German physics educator Martin Wagenschein (who directly refers to Weil’s concepts) to make a case for the rooting function of original/originary experiences and the genetic method to science teaching. The genetic approach allows students to retain their foundational familiarity with the world and their descriptions thereof all the while evolving other (more scientific) ways of explaining natural phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The Italian language (si muovere = smuovere), as the French (se mouvoir) and German (sich bewegen), uses a reflexive verb to express the fact that the agent simultaneously is the patient.

References

  • Aikenhead, G., & Ogawa, M. (2007). Indigenous knowledge and science revisited. Cultural Studies of Science Education, 2, 539–591. doi:10.1007/s11422-007-9067-8.

    Article  Google Scholar 

  • Arendt, H. (1958). The human condition. Chicago: University of Chicago Press.

    Google Scholar 

  • Aristotle. (1560). De cœlo [Of the heavens]. Paris: Gabrielis Buon.

  • Australian Academy of Science. (2013). PrimaryConnections: Linking science with literacy. Accessed September 25, 2013 from http://primaryconnections.org.au/indigenous/.

  • Brandt, C. B. (2008). Discursive geographies in science: Space, identity, and scientific discourse among indigenous women in higher education. Cultural Studies of Science Education, 3, 703–730. doi:10.1007/s11422-007-9075-8.

    Article  Google Scholar 

  • Châtelet, G. (1993). Les enjeux du mobile: Mathématique, physique, philosophie [The stakes of movement: Mathematics, physics, philosophy]. Paris: Éditions du Seuil.

  • Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129–186). Minneapolis, MN: University of Minnesota Press.

  • Copernicus, N. (1543). De revolutionibus orbium cœlestium [On the revolutions of the celestial spheres]. Nuremberg: J. Petreius.

  • Deleuze, G., & Guattari, F. (1972/1973). Capitalisme et schizophrénie: Anti-Œdipe [Capitalism and schizophrenia: Anti-Oedipus:]. Paris: Les Éditions de Minuit.

  • Deleuze, G., & Guattari, F. (1980). Capitalisme et schizophrénie: Mille plateaux [Capitalism and schizophrenia: A thousand plateaus]. Paris: Les Éditions de Minuit.

  • Derrida, J. (1990). Le problème de la genèse dans la philosophie de Husserl [The problem of genesis in the philosophy of Husserl]. Paris: Presses Universitaires de France.

  • Dewey, J. (2008). In J. A. Boydston (Ed.), The later works, 19251953 vol. 13: 19381939: Experience and education, freedom and culture, theory of valuation, and essays. Carbondale, IL: Southern Illinois University Press.

  • Fanetti, T. M. (2001). The relationships of scale concepts on college age students’ misconceptions about the cause of the lunar phases. Unpublished MA thesis, Ames, IA. Accessed September 28, 2013 from http://physicseducation.net/members/Fanetti.pdf.

  • Fischler, H. (2011). Didactic—An appropriate framework for the professional work of science teachers. In D. Corrigan, J. Dillon, & R. Gunstone (Eds.), The professional knowledge base of science teaching (pp. 31–50). Dordrecht: Springer. doi:10.1007/978-90-481-3927-9_3.

    Chapter  Google Scholar 

  • Freinet, C. (1921, May 7). Comment rattacher l’école à la vie [How to connect school with life]. École Émancipée, 32, 126. Accessed March 3, 2014 from http://www.amisdefreinet.org/archives/ecoleemancipee/19210507.html.

  • Galileo, G. [Galileus Galileus Linceus]. (1661). The system of the world in four dialogues. In T. Salusbury (Ed.), Mathematical collections and translations vol. 1 (pp. 1–425). London: William Leybourne.

  • Garfinkel, H. (2002). Ethnomethodology’s program: Working out Durkheim’s aphorism. Lanham, NY: Rowman & Littlefield.

    Google Scholar 

  • Heidegger, M. (1977). Sein und Zeit [Being and time]. Tübingen: Max Niemeyer.

  • Haywood, D., Parker, J., & Rowlands, M. (2013). Exploring the visuospatial challenge of learning about day and night and the sun’s path. Science Education, 97, 772–796. doi:10.1002/sce.21071.

    Article  Google Scholar 

  • Husserl, E. (1939). Die Frage nachdem Ursprung der Geometrie als intentional-historisches Problem [The question of the origin of geometry as intentional-historical problem]. Revue internationale de philosophie, 1, 203–225.

    Google Scholar 

  • Husserl, E. (1940). Grundlegende Untersuchungen zum phänomenologischen Ursprung der Räumlichkeit der Natur [Foundational investigations of the phenomenological origin of the spatiality of nature]. In M. Farber (Ed.), Philosophical essays in memory of Edmund Husserl (pp. 307–325). Cambridge, MA: Harvard University Press. doi:10.4159/harvard.9780674333512.c18.

    Google Scholar 

  • Husserl, E. (1946). Die Welt der lebendigen Gegenwart und die Konstitution der außerleiblichen Welt [The world of the living present and the constitution of the surrounding world]. Phenomenology and Phenomenological Research, 6, 323–343. doi:10.2307/2102690.

    Article  Google Scholar 

  • Husserl, E. (1976). Husserliana Gesammelte Werke Band VI: Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie. Eine Einleitung in die phänomenologische Philosophie [Husserliana collected works vol. 6: The crisis of the European sciences and transcendental phenomenology: An introduction to phenomenological philosophy]. The Hague: Martinus Nijhoff. doi:10.1007/978-94-010-1335-2.

  • Jung, W. (2012). Philosophy of science and education. Science & Education, 21, 1055–1083. doi:10.1007/s11191-012-9497-x.

    Article  Google Scholar 

  • Lederman, M., & Bartsch, I. (Eds.). (2001). The gender and science reader. London: Routledge.

    Google Scholar 

  • Liu, S.-C. (2005). Models of the “heavens and the earth”: An investigation of German and Taiwanese students’ alternative conceptions of the universe. International Journal of Science and Mathematics Education, 3, 295–325. doi:10.1007/s10763-004-4032-4.

    Article  Google Scholar 

  • Liu, S.-C. (2006). From geocentric to heliocentric model of the universe, and the alternative perspectives. Asia-Pacific Forum on Science Learning and Teaching, 6(2). Accessed September 29, 2013 from http://www.ied.edu.hk/apfslt/v6_issue2/liusc/.

  • Lucas, K. B., & Roth, W.-M. (1996). The nature of scientific knowledge and student learning: Two longitudinal case studies. Research in Science Education, 26, 103–129. doi:10.1007/BF02356966.

    Article  Google Scholar 

  • Luria, A. R. (1979). The making of mind: A personal account of Soviet psychology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Marion, J.-L. (1996). La croisée du visible [Crossing of the visible]. Paris: Presses Universitaires de France.

  • Matthews, M. R. (2000). Time for science education: How teaching the history and philosophy of pendulum motion can contribute to science literacy. New York: Kluwer Academic/Plenum Publishers. doi:10.1007/978-94-011-3994-6.

    Book  Google Scholar 

  • Merleau-Ponty, M. (1964). Le visible et l’invisible [The visible and the invisible]. Paris: Gallimard.

  • Merleau-Ponty, M. (2002). Husserl at the limits of phenomenology (including texts by Edmund Husserl). Evanston, IL: Northwestern University Press.

    Google Scholar 

  • Mpofu, V., Otulaja, F. S., & Mushayikwa, E. (2013). Towards culturally relevant classroom science: A theoretical framework focusing on traditional plant healing. Cultural Studies of Science Education,. doi:10.1007/s11422-013-9508-5.

    Google Scholar 

  • Nam, Y. (2012). Rethinking historical and cultural source of spontaneous mental models of water cycle: In the perspective of South Korea. Cultural Studies of Science Education, 7, 485–493. doi:10.1007/s11422-013-9508-5.

    Article  Google Scholar 

  • Østergaard, E., Dahlin, B., & Hugo, A. (2008). Doing phenomenology in science education: A research review. Studies in Science Education, 44, 93–121. doi:10.1080/03057260802264081.

    Article  Google Scholar 

  • Patronis, T., & Spanos, D. (2013). Exemplarity in mathematics education: From a Romanticist viewpoint to a modern hermeneutical one. Science & Education, 22, 1993–2005. doi:10.1007/s11191-013-9577-6.

    Article  Google Scholar 

  • Reuell, P. (2013, April 30). Understanding student weakness. Harvard Gazette. Accessed September 28, 2013 from http://news.harvard.edu/gazette/story/2013/04/understanding-student-weaknesses/.

  • Rorty, R. (1989). Contingency, irony, and solidarity. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Roth, W.-M. (2002). Learning in Moussac. In L. M. Richter & R. Engelhart (Eds.), Life of science: Whitebook on educational initiatives in natural sciences and technology (pp. 45–55). Copenhagen: Learning Lab Denmark.

    Google Scholar 

  • Roth, W.-M. (2008). Bricolage, métissage, hybridity, heterogeneity, diaspora: Concepts for thinking science education in the 21st century. Cultural Studies in Science Education, 3, 891–916. doi:10.1007/s11422-008-9113-1.

    Article  Google Scholar 

  • Roth, W.-M. (2012a). Mathematical learning: The unseen and unforeseen. For the Learning of Mathematics, 32(3), 15–21.

    Google Scholar 

  • Roth, W.-M. (2012b). Through the eyes of the learner. Éducation & Didactique, 6, 129–142.

    Article  Google Scholar 

  • Roth, W.-M. (2013). To event: Towards a post-constructivist approach to theorizing and researching curriculum as event*-in-the-making. Curriculum Inquiry, 43, 388–417. doi:10.1111/curi.12016.

  • Roth, W.-M. (2014). Learning in the discovery sciences: The history of a “radical” conceptual change or the scientific revolution that was not. Journal of the Learning Sciences. doi:10.1080/10508406.2014.893435.

  • Roth, W.-M., & Barton, A. C. (2004). Rethinking scientific literacy. New York: Routledge.

    Book  Google Scholar 

  • Roth, W.-M., & Friesen, N. (2013). Nacherzeugung, Nachverstehen: a phenomenological perspective on how public understanding of science changes by engaging with online media. Public Understanding of Science,. doi:10.1177/0963662513512441.

  • Roth, W.-M., & Friesen, N. (2014). History and the relationship between scientific and pedagogical knowledge: Anatomy lectures then and now. Journal of Curriculum Studies, 46, 180–200. doi:10.1080/00220272.2013773597.

  • Roth, W.-M., & Jornet, A. (2014). Towards a theory of experience. Science Education, 98, 106–126. doi:10.1002/sce.21085.

  • Roth, W.-M., & Lee, S. (2004). Science education as/for participation in the community. Science Education, 88, 263–291. doi:10.1002/sce.10113.

    Article  Google Scholar 

  • Roth, W.-M., Lee, Y. J., & Hwang, S.-W. (2008). Culturing conceptions: From first principles. Cultural Studies of Science Education, 3, 231–261. doi:10.1007/s11422-008-9092-2.

    Article  Google Scholar 

  • Roth, W.-M., McGinn, M. K., Woszczyna, C., & Boutonné, S. (1999). Differential participation during science conversations: The interaction of focal artifacts, social configuration, and physical arrangements. Journal of the Learning Sciences, 8, 293–347. doi:10.1080/10508406.1999.9672073.

    Article  Google Scholar 

  • Roth, W.-M., Tobin, K., & Shaw, K. (1997). Cascades of inscriptions and the re-presentation of nature: How numbers, tables, graphs, and money come to re-present a rolling ball. International Journal of Science Education, 19, 1075–1091. doi:10.1080/0950069970190906.

    Article  Google Scholar 

  • Roth, W.-M., Tobin, K., Zimmermann, A., Bryant, N., & Davis, C. (2002). Lessons on/from the dihybrid cross: An activity theoretical study of learning in coteaching. Journal of Research in Science Teaching, 39, 253–282. doi:10.1002/tea.10018.

    Article  Google Scholar 

  • Schoultz, J., Säljö, R., & Wyndham, J. (2001). Heavenly talk: Discourse, artifacts, and childrens’ understanding of elementary astronomy. Human Development, 44, 103–118. doi:10.1159/000057050.

    Article  Google Scholar 

  • Seely, R. (2012, October 18). Seely on science: UW researcher to study why students drop out of science. Wisconsin State Journal. Accessed September 25, 2013 from http://host.madison.com/news/science/seely-on-science-uw-researcher-to-study-why-students-drop/article_dad880da-194e-11e2-bc08-001a4bcf887a.html.

  • Sheets-Johnstone, M. (2011). The primacy of movement (2nd ed.). Amsterdam: John Bemjamins. doi:10.1075/aicr.82.

    Book  Google Scholar 

  • Siemsen, H. (2010). The Mach–Planck debate revisited: Democratization of science or elite knowledge? Public Understanding of Science, 19, 293–310. doi:10.1177/0963662509335525.

    Google Scholar 

  • Tabarrok, A. (2012, March 4). Turning into drop out. The Chronicle of Higher Education. Accessed September 25, 2013 from http://chronicle.com/article/Tuning-In-to-Dropping-Out/130967/.

  • van Eijck, M., & Roth, W.-M. (2009). Authentic science experiences as a vehicle to change students’ orientation towards science and scientific career choices: Learning from the path followed by Brad. Cultural Studies of Science Education, 4, 611–638. doi:10.1007/s11422-009-9183-8.

    Article  Google Scholar 

  • Van Eijck, M., & Roth, W.-M. (2010). Towards a chronotopic theory of “place” in place-based education. Cultural Studies of Science Education, 5, 869–898. doi:10.1007/s11422-010-9278-2.

    Article  Google Scholar 

  • Vološinov, V. N. (1930). Marksizm i folosofija jazyka: osnovye problemy sociologičeskogo metoda b nauke o jazyke [Marxism and the philosophy of language: Main problems of the sociological method in linguistics]. Leningrad: Priboj.

  • Vosniadou, S. (2013). Model based reasoning and the learning of counter-intuitive science concepts. Infancia y Aprendizaje, 36, 5–33. doi:10.1174/021037013804826519.

    Article  Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18, 123–183. doi:10.1207/s15516709cog1801_4.

    Article  Google Scholar 

  • Vygotskij, L. S. (2005). Psyxhologija razvitija čeloveka [Psychology of human development]. Moscow: Eksmo.

  • Wagenschein, M. (1977). Verstehen lehren: GenetischSokratischExemplarisch [Teaching understanding: Genetically—Socratically—exemplary]. Weinheim: Beltz.

  • Wagenschein, M. (1988). Naturphänomene sehen und verstehenGenetische Lehrgänge [Seeing and understanding natural phenomena—Genetic teaching]. Stuttgart: Klett.

  • Weil, S. (1990). L’enracinement [The rooting]. Paris: Gallimard.

Download references

Acknowledgments

The collection of the data from which the featured fragment was extracted was made possible by a grant from the Natural Sciences and Engineering Research Council of Canada. I thank Pei-Ling Hsu for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolff-Michael Roth.

Additional information

Lead Editor: C. Milne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, WM. Enracinement or the earth, the originary ark, does not move: on the phenomenological (historical and ontogenetic) origin of common and scientific sense and the genetic method of teaching (for) understanding. Cult Stud of Sci Educ 10, 469–494 (2015). https://doi.org/10.1007/s11422-014-9606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11422-014-9606-z

Keywords

Navigation