Skip to main content
Log in

Recent progress in the chemical attribution of chemical warfare agents and highly toxic organophosphorus pesticides

  • Review Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

This paper reviews the background of the development of chemical attribution technology, and discusses analytical and chemometrics technologies for chemical warfare agents (CWAs) and highly toxic organophosphorus pesticides. The analytical methods include gas chromatography–mass spectrometry (GC–MS), liquid chromatography–mass spectrometry (LC–MS), infrared spectroscopy (IR), Raman spectroscopy, nuclear magnetic resonance spectroscopy (NMR), and other technologies. The chemometrics technologies include principal component analysis (PCA), hierarchical cluster analysis (HCA), partial least squares–discriminant analysis (PLS–DA), random forest (RF), and other technologies. The combination of these analytical techniques can be used to detect a variety of CWAs and highly toxic organophosphorus pesticides.

Methods

All the reviewed information was collected through detailed searches on Scopus, PubMed and Web of Science using relevant keywords (such as chemical threat agents, chemical attribution and chemometrics).

Results

Most chemical attribution analyses of CWAs and highly toxic organophosphorus pesticides still rely on chromatography–mass spectrometry, such as GC–MS and LC–MS. Chemical attribution analysis involves sample composition analysis in addition to sample identification as well as sample traceability analysis. The analysis data involved is often relatively large, and thus chemometrics methods are required to adequately analyze the data. However, the analysis of mixtures of CWAs and related chemical substances remains challenging, and the analytical capabilities of the instrument need to be further improved. Although these technologies have high selectivity and application prospects, the analysis of real samples is still rare.

Conclusions

Although the chemical attribution technology for CWAs and related chemical substances has been developed to a certain extent, the development of real sample analytical methods has not been well established or verified. In the future, it is expected that more analytical methods that address sensitivity, specificity, stability, and repeatability will be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. (1997) Chemical Weapons Convention. https://www.opcw.org/chemical-weapons-convention

  2. Declan B (2018) Attacks in UK and Syria highlight growing need for chemical-forensics expertise. Nature 556:285–286. https://doi.org/10.1038/d41586-018-04533-2

    Article  CAS  Google Scholar 

  3. Organisation for the Prohibition of Chemical Weapons (2016) Report of the Scientific Advisory Board’s workshop on chemical forensics, 24th Session of the Scientific Advisory Board(SAB),SAB-24/WP.1

  4. Fraga CG (2018) Chemical forensics. Talanta 186:585. https://doi.org/10.1016/j.talanta.2018.04.057

    Article  CAS  PubMed  Google Scholar 

  5. Morelato M, Beavis A, Tahtouh M, Ribaux O, Kirkbride P, Roux C (2013) The use of forensic case data in intelligence-led policing: the example of drug profiling. Forensic Sci Int 226:1–9. https://doi.org/10.1016/j.forsciint.2013.01.003

    Article  PubMed  Google Scholar 

  6. Popovic A, Morelato M, Roux C, Beavis A (2019) Review of the most common chemometric techniques in illicit drug profiling. Forensic Sci Int 302:109911. https://doi.org/10.1016/j.forsciint.2019.109911

    Article  CAS  PubMed  Google Scholar 

  7. Salouros H (2018) Illicit drug chemical profiling: current and future state. Aust J Forensic Sci 50:689–696. https://doi.org/10.1080/00450618.2018.1424244

    Article  Google Scholar 

  8. Bovens M, Ahrens B, Alberink I, Nordgaard A, Salonen T, Huhtala S (2019) Chemometrics in forensic chemistry—Part I: implications to the forensic workflow. Forensic Sci Int 301:82–90. https://doi.org/10.1016/j.forsciint.2019.05.030

    Article  CAS  PubMed  Google Scholar 

  9. The U.S. Department of Homeland Security (DHS) (2015) Chemical attribution signature studies for chemical threat agents. https://www.fbo.gov/index.php?s=opportunity&mode=form&id=51ac06baf2a6370e70fc8c54cc3f62aa&tab=core&tabmode=list&=

  10. Lommen A (2009) MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81:3079–3086. https://doi.org/10.1021/ac900036d

    Article  CAS  PubMed  Google Scholar 

  11. Lommen A, Kools HJ (2012) MetAlign 3.0: Performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726. https://doi.org/10.1007/s11306-011-0369-1

    Article  CAS  PubMed  Google Scholar 

  12. Lommen A (2012) Data (Pre-)processing of nominal and accurate mass LC-MS or GC-MS data using MetAlign. In Plant Metabolomics: Methods and Protocols, ed. NW Hardy, RD Hall:229–253. Totowa, NJ: Humana Press. Number of 229–253 pp.

  13. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787. https://doi.org/10.1021/ac051437y

    Article  CAS  PubMed  Google Scholar 

  14. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS Online: A web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039. https://doi.org/10.1021/ac300698c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hojer Holmgren K, Hok S, Magnusson R, Larsson A, Astot C et al (2018) Synthesis route attribution of sulfur mustard by multivariate data analysis of chemical signatures. Talanta 186:615–621. https://doi.org/10.1016/j.talanta.2018.02.100

    Article  CAS  PubMed  Google Scholar 

  16. Holmgren KH, Valdez CA, Magnusson R, Vu AK, Lindberg S et al (2018) Part 1: Tracing Russian VX to its synthetic routes by multivariate statistics of chemical attribution signatures. Talanta 186:586–596. https://doi.org/10.1016/j.talanta.2018.02.104

    Article  CAS  PubMed  Google Scholar 

  17. Jansson D, Lindstrom SW, Norlin R, Hok S, Valdez CA et al (2018) Part 2: Forensic attribution profiling of Russian VX in food using liquid chromatography-mass spectrometry. Talanta 186:597–606. https://doi.org/10.1016/j.talanta.2018.02.103

    Article  CAS  PubMed  Google Scholar 

  18. Wiktelius D, Ahlinder L, Larsson A, Hojer Holmgren K, Norlin R, Andersson PO (2018) On the use of spectra from portable Raman and ATR-IR instruments in synthesis route attribution of a chemical warfare agent by multivariate modeling. Talanta 186:622–627. https://doi.org/10.1016/j.talanta.2018.02.108

    Article  CAS  PubMed  Google Scholar 

  19. Strozier ED, Mooney DD, Friedenberg DA, Klupinski TP, Triplett CA (2016) Use of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection and random forest pattern recognition techniques for classifying chemical threat agents and detecting chemical attribution signatures. Anal Chem 88:7068–7075. https://doi.org/10.1021/acs.analchem.6b00725

    Article  CAS  PubMed  Google Scholar 

  20. Coble JB, Fraga CG (2014) Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery. J Chromatogr A 1358:155–164. https://doi.org/10.1016/j.chroma.2014.06.100

    Article  CAS  PubMed  Google Scholar 

  21. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52. https://doi.org/10.1016/0169-7439(87)80084-9

    Article  CAS  Google Scholar 

  22. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433–459. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  23. Bridges CC (1966) Hierarchical Cluster Analysis. Psychol Rep 18:851–854. https://doi.org/10.2466/pr0.1966.18.3.851

    Article  Google Scholar 

  24. Köhn H-F, Hubert LJ (2015) Hierarchical Cluster Analysis. Wiley StatsRef: Statistics Reference Online:1–13. https://doi.org/10.1002/9781118445112.stat02449.pub2

  25. Tin Kam H (1998) The random subspace method for constructing decision forests. IEEE T Pattern Anal 20:832–844. https://doi.org/10.1109/34.709601

    Article  Google Scholar 

  26. Tin Kam H (1995). Random decision forests. Proc Proceedings of 3rd International Conference on Document Analysis and Recognition 1:278–282: https://doi.org/10.1109/ICDAR.1995.598994

  27. Keller JM, Gray MR, Givens JA (1985) A fuzzy K nearest neighbor algorithm. IEEE T Syst Man Cy SMC 15:580–585

    Article  Google Scholar 

  28. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46:175–185. https://doi.org/10.1080/00031305.1992.10475879

    Article  Google Scholar 

  29. Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA Anal Methods 5:3790–3798. https://doi.org/10.1039/C3AY40582F

    Article  CAS  Google Scholar 

  30. Westerhuis JA, van Velzen EJJ, Hoefsloot HCJ, Smilde AK (2010) Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics 6:119–128. https://doi.org/10.1007/s11306-009-0185-z

    Article  CAS  PubMed  Google Scholar 

  31. Hook GL, Kimm GL, Hall T, Smith PA (2002) Solid-phase microextraction (SPME) for rapid field sampling and analysis by gas chromatography-mass spectrometry (GC-MS). TrAC, Trends Anal Chem 21:534–543. https://doi.org/10.1016/S0165-9936(02)00708-2

    Article  CAS  Google Scholar 

  32. Reyes-Garces N, Gionfriddo E, Gomez-Rios GA, Alam MN, Boyaci E et al (2018) Advances in solid phase microextraction and perspective on future directions. Anal Chem 90:302–360. https://doi.org/10.1021/acs.analchem.7b04502

    Article  CAS  PubMed  Google Scholar 

  33. Deng J, Yang Y, Fang L, Lin L, Zhou H, Luan T (2014) Coupling solid-phase microextraction with ambient mass spectrometry using surface coated wooden-tip probe for rapid analysis of ultra trace perfluorinated compounds in complex samples. Anal Chem 86:11159–11166. https://doi.org/10.1021/ac5034177

    Article  CAS  PubMed  Google Scholar 

  34. Smith PA, Koch D, Hook GL, Erickson RP, Jackson Lepage CR et al (2004) Detection of gas-phase chemical warfare agents using field-portable gas chromatography–mass spectrometry systems: instrument and sampling strategy considerations. TrAC, Trends Anal Chem 23:296–306. https://doi.org/10.1016/S0165-9936(04)00405-4

    Article  CAS  Google Scholar 

  35. Terzic O, Swahn I, Cretu G, Palit M, Mallard G (2012) Gas chromatography–full scan mass spectrometry determination of traces of chemical warfare agents and their impurities in air samples by inlet based thermal desorption of sorbent tubes. J Chromatogr A 1225:182–192. https://doi.org/10.1016/j.chroma.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  36. Madmon M, Weissberg A (2020) Trace level detection and identification of tabun in aqueous media by derivatization and liquid chromatography tandem mass spectrometry analysis. Int J Mass Spectrom 456:116393. https://doi.org/10.1016/j.ijms.2020.116393

    Article  CAS  Google Scholar 

  37. Nakagawa T, Tu AT (2018) Murders with VX: Aum Shinrikyo in Japan and the assassination of Kim Jong-Nam in Malaysia. Forensic Toxicol 36:542–544. https://doi.org/10.1007/s11419-018-0426-9

    Article  CAS  Google Scholar 

  38. Seto Y, Tsunoda N, Kataoka M, Tsuge K, Nagano T (1999) Toxicological analysis of victims' blood and crime scene evidence samples in the Sarin gas attack caused by the Aum Shinrikyo Cult. In Natural and Selected Synthetic Toxins, 745:318–332: American Chemical Society. Number of 318–332 pp.

  39. Sengupta S (2013) Report Detail Could Further Implicate Syria in Chemical Attack, Analysts Say. https://www.nytimes.com/2013/12/19/world/middleeast/experts-intrigued-by-tidbit-in-syrian-chemical-arms-report.html

  40. Sheikhoun K (2017) What the OPCW-UN JIM's Leaked Report on Khan Sheikhoun Tells Us About Russia's Denials and Syria's Sarin. https://www.bellingcat.com/news/mena/2017/10/27/opcw-un-jims-leaked-report-khan-sheikhoun-tells-us-russias-denials-syrias-sarin/

  41. Bae SY, Winemiller MD (2018) Trace level analysis of sarin and vx in food using normal phase silica gel and ultra-performance liquid chromatography–time-of-flight mass spectrometry (UPLC–TOF–MS). J Agric Food Chem 66:7846–7856. https://doi.org/10.1021/acs.jafc.8b01756

    Article  CAS  PubMed  Google Scholar 

  42. Nawała J, Czupryński K, Popiel S, Dziedzic D, Bełdowski J (2016) Development of the HS-SPME-GC-MS/MS method for analysis of chemical warfare agent and their degradation products in environmental samples. Anal Chim Acta 933:103–116. https://doi.org/10.1016/j.aca.2016.05.033

    Article  CAS  PubMed  Google Scholar 

  43. Weissberg A, Madmon M, Elgarisi M, Dagan S (2017) Determination of trace amounts of G-type nerve agents in aqueous samples utilizing “in vial” instantaneous derivatization and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1512:71–77. https://doi.org/10.1016/j.chroma.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  44. Weissberg A, Madmon M, Elgarisi M, Dagan S (2018) Aqueous extraction followed by derivatization and liquid chromatography–mass spectrometry analysis: a unique strategy for trace detection and identification of G-nerve agents in environmental matrices. J Chromatogr A 1577:24–30. https://doi.org/10.1016/j.chroma.2018.09.052

    Article  CAS  PubMed  Google Scholar 

  45. Valdez CA, Leif RN, Hok S, Vu AK, Salazar EP, Alcaraz A (2019) Methylation protocol for the retrospective detection of isopropyl-, pinacolyl- and cyclohexylmethylphosphonic acids, indicative markers for the nerve agents sarin, soman and cyclosarin, at low levels in soils using EI-GC–MS. Sci Total Environ 683:175–184. https://doi.org/10.1016/j.scitotenv.2019.05.205

    Article  CAS  PubMed  Google Scholar 

  46. Valdez CA, Marchioretto MK, Leif RN, Hok S (2018) Efficient derivatization of methylphosphonic and aminoethylsulfonic acids related to nerve agents simultaneously in soils using trimethyloxonium tetrafluoroborate for their enhanced, qualitative detection and identification by EI-GC-MS and GC-FPD. Forensic Sci Int 288:159–168. https://doi.org/10.1016/j.forsciint.2018.04.041

    Article  CAS  PubMed  Google Scholar 

  47. Pagliano E (2020) Versatile derivatization for GC-MS and LC-MS: alkylation with trialkyloxonium tetrafluoroborates for inorganic anions, chemical warfare agent degradation products, organic acids, and proteomic analysis. Anal Bioanal Chem 412:1963–1971. https://doi.org/10.1007/s00216-019-02299-8

    Article  CAS  PubMed  Google Scholar 

  48. Young SA, Capacio BR (2019) The Application of a Single-Column GC–MS-MS Method for the Rapid Analysis of Chemical Warfare Agents and Breakdown Products. J Anal Toxicol 43:179–187. https://doi.org/10.1093/jat/bky085

    Article  CAS  PubMed  Google Scholar 

  49. Chandra B, Sinha Roy K, Shaik M, Waghmare C, Palit M (2020) Mass spectral studies of silyl derivatives of partially hydrolyzed products of nitrogen mustards: Important markers of nitrogen mustard exposure. Rapid Commun Mass Spectrom 34:e8586. https://doi.org/10.1002/rcm.8586

    Article  CAS  PubMed  Google Scholar 

  50. Otsuka M, Tsuge K, Seto Y, Miyaguchi H, Uchiyama M (2018) Analysis of degradation products of nerve agents via post-pentafluorobenzylation liquid chromatography-tandem mass spectrometry. J Chromatogr A 1577:31–37. https://doi.org/10.1016/j.chroma.2018.09.042

    Article  CAS  PubMed  Google Scholar 

  51. Popiel S, Nawała J, Dziedzic D, Söderström M, Vanninen P (2014) Determination of mustard gas hydrolysis products thiodiglycol and thiodiglycol sulfoxide by gas chromatography-tandem mass spectrometry after trifluoroacetylation. Anal Chem 86:5865–5872. https://doi.org/10.1021/ac500656g

    Article  CAS  PubMed  Google Scholar 

  52. Smith PA, Lepage CRJ, Savage PB, Bowerbank CR, Lee ED, Lukacs MJ (2011) Use of a hand-portable gas chromatograph–toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX). Anal Chim Acta 690:215–220. https://doi.org/10.1016/j.aca.2011.02.026

    Article  CAS  PubMed  Google Scholar 

  53. Smith PA, Lepage CJ, Lukacs M, Martin N, Shufutinsky A, Savage PB (2010) Field-portable gas chromatography with transmission quadrupole and cylindrical ion trap mass spectrometric detection: chromatographic retention index data and ion/molecule interactions for chemical warfare agent identification. Int J Mass Spectrom 295:113–118. https://doi.org/10.1016/j.ijms.2010.03.001

    Article  CAS  Google Scholar 

  54. Nagashima H, Kondo T, Nagoya T, Ikeda T, Kurimata N et al (2015) Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator. J Chromatogr A 1406:279–290. https://doi.org/10.1016/j.chroma.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  55. Choi S-K, Jeong Y-S, Koh Y, Lee J, Nam H-W (2019) Analysis of Raman spectral characteristics of chemical warfare agents by Using 248-nm UV Raman Spectroscopy. Bull Korean Chem Soc 40:279–284. https://doi.org/10.1002/bkcs.11679

    Article  CAS  Google Scholar 

  56. Juhlin L, Mikaelsson T, Hakonen A, Schmidt MS, Rindzevicius T et al (2020) Selective surface-enhanced Raman scattering detection of Tabun, VX and Cyclosarin nerve agents using 4-pyridine amide oxime functionalized gold nanopillars. Talanta 211:120721. https://doi.org/10.1016/j.talanta.2020.120721

    Article  CAS  PubMed  Google Scholar 

  57. Lafuente M, Sanz D, Urbiztondo M, Santamaría J, Pina MP, Mallada R (2020) Gas phase detection of chemical warfare agents CWAs with portable Raman. J Hazard Mater 384:121279. https://doi.org/10.1016/j.jhazmat.2019.121279

    Article  CAS  PubMed  Google Scholar 

  58. Organisation for the Prohibition of Chemical Weapons (2001) The Sarin gas attack in Japan and the related forensic investigation. https://www.opcw.org/media-centre/news/2001/06/sarin-gas-attack-japan-and-related-forensic-investigation

  59. Miyata Y, Nonaka H, Yoshida T, Ando H (2000) Analyses of sarin and related compounds used in the Tokyo Subway Sarin Incident. Jpn J Forensic Toxicol 18:39–48

    CAS  Google Scholar 

  60. D’Agostino PA, Chenier CL, Hancock JR (2002) Packed capillary liquid chromatography—electrospray mass spectrometry of snow contaminated with sarin. J Chromatogr A 950:149–156. https://doi.org/10.1016/S0021-9673(02)00050-X

    Article  PubMed  Google Scholar 

  61. D’Agostino PA, Hancock JR, Chenier CL, Lepage CR (2006) Liquid chromatography electrospray tandem mass spectrometric and desorption electrospray ionization tandem mass spectrometric analysis of chemical warfare agents in office media typically collected during a forensic investigation. J Chromatogr A 1110:86–94. https://doi.org/10.1016/j.chroma.2006.01.083

    Article  CAS  PubMed  Google Scholar 

  62. Hoggard JC, Wahl JH, Synovec RE, Mong GM, Fraga CG (2010) Impurity profiling of a chemical weapon precursor for possible forensic signatures by comprehensive two-dimensional gas chromatography/mass spectrometry and chemometrics. Anal Chem 82:689–698. https://doi.org/10.1021/ac902247x

    Article  CAS  PubMed  Google Scholar 

  63. Dhillon IS, Sra S (2005). Generalized nonnegative matrix approximations with Bregman divergences. Proc. Proceedings of the 18th International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada: MIT Press, 283–290

  64. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791. https://doi.org/10.1038/44565

    Article  CAS  PubMed  Google Scholar 

  65. Fraga CG, Sego LH, Hoggard JC, Acosta GAP, Viglino EA et al (2012) Preliminary effects of real-world factors on the recovery and exploitation of forensic impurity profiles of a nerve-agent simulant from office media. J Chromatogr A 1270:269–282. https://doi.org/10.1016/j.chroma.2012.10.053

    Article  CAS  PubMed  Google Scholar 

  66. Stein SE, Scott DR (1994) Optimization and testing of mass spectral library search algorithms for compound identification. J Am Soc Mass Spectrom 5:859–866. https://doi.org/10.1016/1044-0305(94)87009-8

    Article  CAS  PubMed  Google Scholar 

  67. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters. John Wiley & Sons Inc, Hoboken, New Jersey

    Google Scholar 

  68. Behringer DL, Smith DL, Katona VR, Lewis AT Jr, Hernon-Kenny LA, Crenshaw MD (2014) Demonstration of spread-on peel-off consumer products for sampling surfaces contaminated with pesticides and chemical warfare agent signatures. Forensic Sci Int 241:7–14. https://doi.org/10.1016/j.forsciint.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  69. Wahl JH, Colburn HA (2010) Extraction of chemical impurities for forensic investigations: a case study for indoor releases of a sarin surrogate. Build Sci 45:1339–1345. https://doi.org/10.1016/j.buildenv.2009.10.020

    Article  Google Scholar 

  70. Mo KF, Heredia-Langner A, Fraga CG (2017) Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction. Talanta 164:92–99. https://doi.org/10.1016/j.talanta.2016.11.016

    Article  CAS  PubMed  Google Scholar 

  71. Fraga CG, Clowers BH, Moore RJ, Zink EM (2010) Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal Chem 82:4165–4173. https://doi.org/10.1021/ac1003568

    Article  CAS  PubMed  Google Scholar 

  72. Gentile N, Siegwolf RT, Esseiva P, Doyle S, Zollinger K, Delemont O (2015) Isotope ratio mass spectrometry as a tool for source inference in forensic science: a critical review. Forensic Sci Int 251:139–158. https://doi.org/10.1016/j.forsciint.2015.03.031

    Article  CAS  PubMed  Google Scholar 

  73. Moran JJ, Ehrhardt CJ, Wahl JH, Kreuzer HW, Wahl KL (2013) Integration of stable isotope and trace contaminant concentration for enhanced forensic acetone discrimination. Talanta 116:866–869. https://doi.org/10.1016/j.talanta.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  74. Benson SJ, Lennard CJ, Maynard P, Hill DM, Andrew AS, Roux C (2009) Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)-discrimination of ammonium nitrate sources. Sci Justice 49:73–80. https://doi.org/10.1016/j.scijus.2009.04.005

    Article  CAS  PubMed  Google Scholar 

  75. Brust H, Koeberg M, van der Heijden A, Wiarda W, Mügler I et al (2015) Isotopic and elemental profiling of ammonium nitrate in forensic explosives investigations. Forensic Sci Int 248:101–112. https://doi.org/10.1016/j.forsciint.2014.11.024

    Article  CAS  PubMed  Google Scholar 

  76. Moran JJ, Fraga CG, Nims MK (2018) Stable-carbon isotope ratios for sourcing the nerve-agent precursor methylphosphonic dichloride and its products. Talanta 186:678–683. https://doi.org/10.1016/j.talanta.2018.04.021

    Article  CAS  PubMed  Google Scholar 

  77. Fraga CG, Acosta GA, Crenshaw MD, Wallace K, Mong GM, Colburn HA (2011) Impurity profiling to match a nerve agent to its precursor source for chemical forensics applications. Anal Chem 83:9564–9572. https://doi.org/10.1021/ac202340u

    Article  CAS  PubMed  Google Scholar 

  78. Masta A, Gray PJ, Phillips DR (1995) Nitrogen mustard inhibits transcription and translation in a cell free system. Nucleic Acids Res 23:3508–3515. https://doi.org/10.1093/nar/23.17.3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fraga CG, Bronk K, Dockendorff BP, Heredia-Langner A (2016) Organic chemical attribution signatures for the sourcing of a mustard agent and its starting materials. Anal Chem 88:5406–5413. https://doi.org/10.1021/acs.analchem.6b00766

    Article  CAS  PubMed  Google Scholar 

  80. Pierce KM, Hoggard JC, Hope JL, Rainey PM, Hoofnagle AN et al (2006) Fisher ratio method applied to third-order separation data to identify significant chemical components of metabolite extracts. Anal Chem 78:5068–5075. https://doi.org/10.1021/ac069337v

    Article  CAS  PubMed  Google Scholar 

  81. Pierce KM, Hope JL, Johnson KJ, Wright BW, Synovec RE (2005) Classification of gasoline data obtained by gas chromatography using a piecewise alignment algorithm combined with feature selection and principal component analysis. J Chromatogr A 1096:101–110. https://doi.org/10.1016/j.chroma.2005.04.078

    Article  CAS  PubMed  Google Scholar 

  82. Mirjankar NS, Fraga CG, Carman AJ, Moran JJ (2016) Source attribution of cyanides using anionic impurity profiling, stable isotope ratios, trace elemental analysis and chemometrics. Anal Chem 88:1827–1834. https://doi.org/10.1021/acs.analchem.5b04126

    Article  CAS  PubMed  Google Scholar 

  83. Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom 20:341–351. https://doi.org/10.1002/cem.1006

    Article  CAS  Google Scholar 

  84. Afanador NL, Smolinska A, Tran TN, Blanchet L (2016) Unsupervised random forest: a tutorial with case studies. J Chemom 30:232–241. https://doi.org/10.1002/cem.2790

    Article  CAS  Google Scholar 

  85. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  86. D’Agostino PA, Provost LR, Visentini J (1987) Analysis of O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) by capillary column gas chromatography-mass spectrometry. J Chromatogr A 402:221–232. https://doi.org/10.1016/0021-9673(87)80020-1

    Article  CAS  Google Scholar 

  87. Sliwakowski M (1997) GC/MS Investigation of Ethyl S-2-diisopropyl Aminoethyl Methylphosphonothiolate (VX) Age Decomposition Products. In: Heyl M, McGuire R (eds) Analytical chemistry associated with the destruction of chemical weapons. Springer, Dordrecht, pp 127–132

    Chapter  Google Scholar 

  88. Rohrbaugh DK (1998) Characterization of equimolar VX–water reaction product by gas chromatography–mass spectrometry. J Chromatogr A 809:131–139. https://doi.org/10.1016/S0021-9673(98)00148-4

    Article  CAS  Google Scholar 

  89. Rohrbaugh DK (2000) Methanol chemical ionization quadrupole ion trap mass spectrometry of O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its degradation products. J Chromatogr A 893:393–400. https://doi.org/10.1016/S0021-9673(00)00752-4

    Article  CAS  PubMed  Google Scholar 

  90. Gravett MR, Hopkins FB, Self AJ, Webb AJ, Timperley CM, Riches JR (2014) Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination. Anal Bioanal Chem 406:5121–5135. https://doi.org/10.1007/s00216-014-7963-9

    Article  CAS  PubMed  Google Scholar 

  91. D’Agostino PA, Hancock JR, Provost LR (1999) Analysis of O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its degradation products by packed capillary liquid chromatography–electrospray mass spectrometry. J Chromatogr A 837:93–105. https://doi.org/10.1016/S0021-9673(99)00102-8

    Article  PubMed  Google Scholar 

  92. Piao H, Marx RB, Schneider S, Irvine DA, Staton J (2005) Analysis of VX nerve agent hydrolysis products in wastewater effluents by ion chromatography with amperometric and conductivity detection. J Chromatogr A 1089:65–71. https://doi.org/10.1016/j.chroma.2005.06.056

    Article  CAS  PubMed  Google Scholar 

  93. Ovenden SPB, Webster RL, Micich E, McDowall LJ, McGill NW et al (2020) The identification of chemical attribution signatures of stored VX nerve agents using NMR, GC-MS, and LC-HRMS. Talanta 211:120753. https://doi.org/10.1016/j.talanta.2020.120753

    Article  CAS  PubMed  Google Scholar 

  94. Carmany D, Walz AJ, Hsu FL, Benton B, Burnett D et al (2017) Activity based protein profiling leads to identification of novel protein targets for nerve agent VX. Chem Res Toxicol 30:1076–1084. https://doi.org/10.1021/acs.chemrestox.6b00438

    Article  CAS  PubMed  Google Scholar 

  95. Mathews TP, Carter MD, Johnson D, Isenberg SL, Graham LA et al (2017) High-confidence qualitative identification of organophosphorus nerve agent adducts to human butyrylcholinesterase. Anal Chem 89:1955–1964. https://doi.org/10.1021/acs.analchem.6b04441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Montauban C, Begos A, Bellier B (2004) Extraction of nerve agent VX from soils. Anal Chem 76:2791–2797. https://doi.org/10.1021/ac035441q

    Article  CAS  PubMed  Google Scholar 

  97. Williams AM, Vu AK, Mayer BP, Hok S, Valdez CA, Alcaraz A (2018) Part 3: Solid phase extraction of Russian VX and its chemical attribution signatures in food matrices and their detection by GC-MS and LC-MS. Talanta 186:607–614. https://doi.org/10.1016/j.talanta.2018.03.044

    Article  CAS  PubMed  Google Scholar 

  98. Kim K, Tsay OG, Atwood DA, Churchill DG (2011) Destruction and detection of chemical warfare agents. Chem Rev 111:5345–5403. https://doi.org/10.1021/cr100193y

    Article  CAS  PubMed  Google Scholar 

  99. Mayer BP, DeHope AJ, Mew DA, Spackman PE, Williams AM (2016) Chemical attribution of fentanyl using multivariate statistical analysis of orthogonal mass spectral data. Anal Chem 88:4303–4310. https://doi.org/10.1021/acs.analchem.5b04434

    Article  CAS  PubMed  Google Scholar 

  100. Mayer BP, Valdez CA, DeHope AJ, Spackman PE, Williams AM (2018) Statistical analysis of the chemical attribution signatures of 3-methylfentanyl and its methods of production. Talanta 186:645–654. https://doi.org/10.1016/j.talanta.2018.02.026

    Article  CAS  PubMed  Google Scholar 

  101. James G, Witten D, Hastie T, Tibshirani R (2015) An Introduction to Statistical Learning with Applications in R. Springer, New York

    Google Scholar 

  102. Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York

    Book  Google Scholar 

  103. (2014) Chemical Forensics Program – Providing Law Enforcement with New Forensic Tools for the Investigation of Chemical Attacks. https://www.dhs.gov/publication/chemical-forensics-program

  104. Jackson NB (2016) Chemical Risks and Threats for the Pharmaceutical Industy, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States)

  105. Mazzitelli CL, Re MA, Reaves MA, Acevedo CA, Straight SD, Chipuk JE (2012) A systematic method for the targeted discovery of chemical attribution signatures: application to isopropyl bicyclophosphate production. Anal Chem 84:6661–6671. https://doi.org/10.1021/ac300859j

    Article  CAS  PubMed  Google Scholar 

  106. Colt JS, Lubin J, Camann D, Davis S, Cerhan J et al (2004) Comparison of pesticide levels in carpet dust and self-reported pest treatment practices in four US sites. J Exp Anal Environ Epidemiol 14:74–83. https://doi.org/10.1038/sj.jea.7500307

    Article  CAS  Google Scholar 

  107. Favela KH, Bohmann JA, Williamson WS (2012) Dust as a collection media for contaminant source attribution. Forensic Sci Int 217:39–49. https://doi.org/10.1016/j.forsciint.2011.09.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFC1602600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmei Wang or Junhua Xiao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhang, Z., Gao, R. et al. Recent progress in the chemical attribution of chemical warfare agents and highly toxic organophosphorus pesticides. Forensic Toxicol 39, 334–349 (2021). https://doi.org/10.1007/s11419-021-00578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-021-00578-7

Keywords

Navigation