Skip to main content
Log in

Versatile derivatization for GC-MS and LC-MS: alkylation with trialkyloxonium tetrafluoroborates for inorganic anions, chemical warfare agent degradation products, organic acids, and proteomic analysis

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Analytical chemists resort to derivatization for improving the detection performance of certain categories of analytes. Within this context, alkylation reactions are regarded as an important asset for many methods based on GC-MS and LC-MS. Trialkyloxonium tetrafluoroborates (R\(_{3}\textit {O}^{+}\)[BF4]) are powerful alkylating agents with ionic liquid properties: they are nonvolatile salts soluble in water which are easier and safer to handle with respect to common alkylating agents like diazomethane. R\(_{3}\textit {O}^{+}\)[BF4] can perform the alkylation in both organic and aqueous media at pH conditions ranging from acidic to alkaline. Recent analytical applications of trialkyloxonium derivatizations include the high-precision determination of inorganic anions in complex matrices, the qualitative confirmation of chemical warfare agent degradation products in soils, the profiling of carboxylic acids in urine, and the detection of protein post-translational modifications induced by carbon dioxide. The common denominator for all methods presented can be found in the simplicity of the alkylation protocol which, in most of the cases, requires a single step addition of the reagent directly to the sample.

Alkylation with trialkyloxonium salts for GC-MS and LC-MS analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blau K, Halket JM, (eds). 1993, 2nd ed.. Wiley.

  2. Wells RJ. Recent advances in non-silylation derivatization techniques for gas chromatography. J Chromatogr A 1999;843:1–18. https://doi.org/10.1016/s0021-9673(98)00986-8.

    Article  CAS  Google Scholar 

  3. Casas Ferreira AM, Fernández Laespada ME, Pérez Pavón JL, Cordero BM. In situ aqueous derivatization as sample preparation technique for gas chromatographic determinations. J Chromatogr A 2013;1296: 70–83. https://doi.org/10.1016/j.chroma.2013.04.084.

    Article  CAS  Google Scholar 

  4. Qi BL, Liu P, Wang QY, Cai WJ, Yuan BF, Feng YQ. Derivatization for liquid chromatography-mass spectrometry. Trends Anal Chem 2014;59:121–132. https://doi.org/10.1016/j.trac.2014.03.013.

    Article  CAS  Google Scholar 

  5. Wasslen KV, Tan LH, Manthorpe JM, Smith JC. Trimethylation enhancement using diazomethane (TrEnDi): Rapid on-column quaternization of peptide amino groups via reaction with diazomethane significantly enhances sensitivity in mass spectrometry analyses via a fixed, permanent positive charge. Anal Chem 2014;86: 3291–3299. https://doi.org/10.1021/ac403349c.

    Article  CAS  PubMed  Google Scholar 

  6. Wasslen KV, Canez CR, Lee H, Manthorpe JM, Smith JC. Trimethylation enhancement using diazomethane (TrEnDi) II: Rapid in-solution concomitant quaternization of glycerophospholipid amino groups and methylation of phosphate groups via reaction with diazomethane significantly enhances sensitivity in mass spectrometry analyses via a fixed, permanent positive charge. Anal Chem 2014;86:9523–9532. https://doi.org/10.1021/ac501588y.

    Article  CAS  PubMed  Google Scholar 

  7. Olah GA, Laali KK, Wang Q, Surya Prakash GK. Onium Ions. New York: Wiley; 1998.

    Google Scholar 

  8. Perst H, Seapy DG. 2008. Triethyloxonium Tetrafluoroborate. Wiley.

  9. D’Ulivo A, Pagliano E, Onor M, Pitzalis E, Zamboni R. Vapor generation of inorganic anionic species after aqueous phase alkylation with trialkyloxonium tetrafluoroborates. Anal Chem 2009;81:6399–6406. https://doi.org/10.1021/ac900865d.

    Article  CAS  Google Scholar 

  10. Pagliano E, Campanella B, D’Ulivo A, Mester Z. Derivatization chemistries for the determination of inorganic anions and structurally related compounds by gas chromatography - a review. Anal Chim Acta 2018;1025: 12–40. https://doi.org/10.1016/j.aca.2018.03.043.

    Article  CAS  PubMed  Google Scholar 

  11. Campanella B, Onor M, Pagliano E. Rapid determination of nitrate in vegetables by gas chromatography mass spectrometry. Anal Chim Acta 2017;980:33–40. https://doi.org/10.1016/j.aca.2017.04.053.

    Article  CAS  PubMed  Google Scholar 

  12. Gajdosechova Z, Mester Z, Pagliano E. A rapid and sensitive method for the determination of inorganic chloride in oil samples. Anal Chim Acta 2019;1064:40–46. https://doi.org/10.1016/j.aca.2019.02.055.

    Article  CAS  PubMed  Google Scholar 

  13. Ammazzini S, Onor M, Pagliano E, Mester Z, Campanella B, Pitzalis E, Bramanti E, D’Ulivo A. Determination of thiocyanate in saliva by headspace gas chromatography-mass spectrometry, following a single-step aqueous derivatization with triethyloxonium tetrafluoroborate. J Chromatogr A 2015;1400: 124–130. 10.1016/j.chroma.2015.04.040.

    Article  CAS  PubMed  Google Scholar 

  14. Chandler JD, Horati H, Walker DI, Pagliano E, Tirouvanziam R, Veltman M, Scholte BJ, Janssens HM, Go YM, Jones DP. Determination of thiocyanate in exhaled breath condensate. Free Radic Biol Med 2018;126:334–340. https://doi.org/10.1016/j.freeradbiomed.2018.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valdez CA, Leif RN, Alcaraz A. Effective methylation of phosphonic acids related to chemical warfare agents mediated by trimethyloxonium tetrafluoroborate for their qualitative detection and identification by gas chromatography-mass spectrometry. Anal Chim Acta 2016;933:134–143. https://doi.org/10.1016/j.aca.2016.05.034.

    Article  CAS  PubMed  Google Scholar 

  16. Valdez CA, Marchioretto MK, Leif RN, Hok S. Efficient derivatization of methylphosphonic and aminoethylsulfonic acids related to nerve agents simultaneously in soils using trimethyloxonium tetrafluoroborate for their enhanced, qualitative detection and identification by EI-GC-MS and GC-FPD. Forensic Sci Int 2018;288:159–168. https://doi.org/10.1016/j.forsciint.2018.04.041.

    Article  CAS  PubMed  Google Scholar 

  17. Valdez CA, Leif RN, Hok S, Vu AK, Salazar EP, Alcaraz A. Methylation protocol for the retrospective detection of isopropyl-, pinacolyl- and cyclohexylmethylphosphonic acids, indicative markers for the nerve agents sarin, soman and cyclosarin, at low levels in soils using EI-GC-MS. Sci Total Environ 2019;683:175–184. https://doi.org/10.1016/j.scitotenv.2019.05.205.

    Article  CAS  PubMed  Google Scholar 

  18. Linthwaite VL, Janus JM, Brown AP, Wong-Pascua D, O’Donoghue AC, Porter A, Treumann A, Hodgson DRW, Cann MJ. The identification of carbon dioxide mediated protein post-translational modifications. Nat Commun 2018;9:3092. https://doi.org/10.1038/s41467-018-05475-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dirven HAAM, van den Broek PHH, Jongeneelen FJ. Determination of four metabolites of the plasticizer di (2-ethylhexyl) phthalate in human urine samples. Int Arch Occup Environ Health 1993;64:555–560. https://doi.org/10.1007/bf00517700.

    Article  CAS  PubMed  Google Scholar 

  20. Liebich HM, Gesele E, Wöll J. Urinary organic acid screening by solid-phase microextraction of the methyl esters. J Chromatogr B Biomed Sci Appl 1998;713:427–432. https://doi.org/10.1016/s0378-4347(98)00156-x.

    Article  CAS  PubMed  Google Scholar 

  21. Liebich HM, Gesele E. Profiling of organic acids by capillary gas chromatography-mass spectrometry after direct methylation in urine using trimethyloxonium tetrafluoroborate. J Chromatogr A 1999;843:237–245. https://doi.org/10.1016/s0021-9673(99)00416-1.

    Article  CAS  PubMed  Google Scholar 

  22. Pacenti M, Dugheri S, Villanelli F, Bartolucci G, Calamai L, Boccalon P, Arcangeli G, Vecchione F, Alessi P, Kikic I, Cupelli V. Determination of organic acids in urine by solid-phase microextraction and gas chromatography-ion trap tandem mass spectrometry previous ‘in sample’ derivatization with trimethyloxonium tetrafluoroborate. Biomed Chromatogr 2008;22:1155–1163. https://doi.org/10.1002/bmc.1039.

    Article  CAS  PubMed  Google Scholar 

  23. Kim JS, Kim JH, Kim HJ. Matrix-assisted laser desorption/ionization signal enhancement of peptides by picolinamidination of amino groups. Rapid Commun Mass Spectrom 2008;22:495–502. https://doi.org/10.1002/rcm.3392.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JS, Cui E, Kim HJ. Picolinamidination of phosphopeptides for MALDI-TOF-TOF mass spectrometric sequencing with enhanced sensitivity. J Am Soc Mass Spectrom 2009;20:1751–1758. https://doi.org/10.1016/j.jasms.2009.05.016.

    Article  CAS  PubMed  Google Scholar 

  25. Kim JS, Song JS, Kim Y, Park SB, Kim HJ. De novo analysis of protein n-terminal sequence utilizing MALDI signal enhancing derivatization with br signature. Anal Bioanal Chem 2012;402:1911–1919. https://doi.org/10.1007/s00216-011-5642-7.

    Article  CAS  PubMed  Google Scholar 

  26. Chericoni S, Battistini I, Dugheri S, Pacenti M, Giusiani M. Novel method for simultaneous aqueous in situ derivatization of THC and THC-COOH in human urine samples: Validation and application to real samples. J Anal Toxicol 2011;35:193–198. https://doi.org/10.1093/anatox/35.4.193.

    Article  CAS  PubMed  Google Scholar 

  27. Pagliano E, Meija J, Ding J, Sturgeon RE, D’Ulivo A, Mester Z. Novel ethyl-derivatization approach for the determination of fluoride by headspace gas chromatography/mass spectrometry. Anal Chem 2013; 85:877–881. https://doi.org/10.1021/ac302303r.

    Article  CAS  PubMed  Google Scholar 

  28. Pagliano E, Meija J, Mester Z. High-precision quadruple isotope dilution method for simultaneous determination of nitrite and nitrate in seawater by GCMS after derivatization with triethyloxonium tetrafluoroborate. Anal Chim Acta 2014;824:36–41. https://doi.org/10.1016/j.aca.2014.03.018.

    Article  CAS  PubMed  Google Scholar 

  29. Burton GW, Daroszewski J, Mogg TJ, Nikiforov GB, Nickerson JG. Discovery and characterization of carotenoid-oxygen copolymers in fruits and vegetables with potential health benefits. J Agric Food Chem 2016;64: 3767–3777. https://doi.org/10.1021/acs.jafc.6b00503.

    Article  CAS  PubMed  Google Scholar 

  30. Pagliano E, Campanella B, Shi L, Thibeault MP, Onor M, Crum S, Melanson JE, Mester Z. Determination of total dissolved nitrogen in seawater by isotope dilution gas chromatography mass spectrometry following digestion with persulfate and derivatization with aqueous triethyloxonium. J Chromatogr A 2018;1569: 193–199. https://doi.org/10.1016/j.chroma.2018.07.055.

    Article  CAS  PubMed  Google Scholar 

  31. Pagliano E, LeBlanc KL, Mester Z. Selective gas chromatography mass spectrometry method for ultratrace detection of selenocyanate. Anal Chem 2019;91:12162–12166. https://doi.org/10.1021/acs.analchem.9b02615.

    Article  CAS  PubMed  Google Scholar 

  32. Meerwein H, Hinz G, Hofmann P, Kroning E, Pfeil E. Über tertiäre oxoniumsalze, I. J Prakt Chem 1937;147:257–285. https://doi.org/10.1002/prac.19371471001.

    Article  CAS  Google Scholar 

  33. Meerwein H, Battenberg E, Gold H. Über tertiäre oxoniumsalze II. J Prakt Chem 1939;154:83–156. https://doi.org/10.1002/prac.19391540305.

    Article  CAS  Google Scholar 

  34. Granik VG, Pyatin BM, Glushkov RG. The chemistry of trialkyloxonium fluoroborates. Russ Chem Rev 1971;40:747–759. https://doi.org/10.1070/rc1971v040n09abeh001967.

    Article  Google Scholar 

  35. Nelson A, Zong Y, Fritz KE, Suntivich J, Robinson RD. Assessment of soft ligand removal strategies: Alkylation as a promising alternative to high-temperature treatments for colloidal nanoparticle surfaces. ACS Materials Lett 2019;1:177–184. https://doi.org/10.1021/acsmaterialslett.9b00089.

    Article  CAS  Google Scholar 

  36. Richter W. Primary methods of measurement in chemical analysis. Accred Qual Assur 1997;2:354–359. https://doi.org/10.1007/s007690050165.

    Article  CAS  Google Scholar 

  37. Heumann KG. Isotope-dilution ICP–MS for trace element determination and speciation: from a reference method to a routine method? Anal Bioanal Chem 2004;378:318–329. https://doi.org/10.1007/s00216-003-2325-z.

    Article  CAS  PubMed  Google Scholar 

  38. Kozlov AV, Borisov RS, Zaikin VG. A “soft” ionization mass spectrometric study of organic sulfides as sulfonium salts. J Anal Chem 2016;71:1294–1300. https://doi.org/10.1134/s1061934816140070.

    Article  CAS  Google Scholar 

  39. Raber DJ, Gariano P, Brod AO, Gariano A, Guida WC, Guida AR, Herbst MD. Esterification of carboxylic acids with trialkyloxonium salts. J Org Chem 1979;44:1149–1154. https://doi.org/10.1021/jo01321a027.

    Article  CAS  Google Scholar 

  40. Cardenia V, Gallina Toschi T, Scappini S, Rubino RC, Rodriguez-Estrada MT. Development and validation of a fast gas chromatography/mass spectrometry method for the determination of cannabinoids in cannabis sativa l. J Food Drug Anal 2018;26:1283–1292. https://doi.org/10.1016/j.jfda.2018.06.001.

    Article  CAS  PubMed  Google Scholar 

  41. Black RM, Muir B. Derivatisation reactions in the chromatographic analysis of chemical warfare agents and their degradation products. J Chromatogr A 2003;1000:253–281. https://doi.org/10.1016/s0021-9673(03)00183-3.

    Article  CAS  PubMed  Google Scholar 

  42. Lorimer GH, Miziorko HM. Carbamate formation on the epsilon-amino group of a lysyl residue as the basis for the activation of ribulosebisphosphate carboxylase by co24 and mg2+. Biochemistry. 1980;19:5321–5328. https://doi.org/10.1021/bi00564a027.

    Article  CAS  PubMed  Google Scholar 

  43. Lorimer GH. Carbon dioxide and carbamate formation: the makings of a biochemical control system. Trends Biochem Sci 1983;8:65–68. https://doi.org/10.1016/0968-0004(83)90393-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The reviewers are greatly acknowledged. Their comments and suggestions helped improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enea Pagliano.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagliano, E. Versatile derivatization for GC-MS and LC-MS: alkylation with trialkyloxonium tetrafluoroborates for inorganic anions, chemical warfare agent degradation products, organic acids, and proteomic analysis. Anal Bioanal Chem 412, 1963–1971 (2020). https://doi.org/10.1007/s00216-019-02299-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02299-8

Keywords

Navigation