Skip to main content
Log in

Colorimetric detection and chromatographic analyses of designer drugs in biological materials: a comprehensive review

  • Review Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

A number of analogues of phenethylamine and tryptamine, which are prepared by modification of the chemical structures, are being developed for circulation on the black market. Often called “designer drugs,” they are abused in many countries, and cause serious social problems in many parts of the world. Acute deaths have been reported after overdoses of designer drugs. Various methods are required for screening and routine analysis of designer drugs in biological materials for forensic and clinical purposes. Many sample preparation and chromatographic methods for analysis of these drugs in biological materials and seized items have been published. This review presents various colorimetric detections, gas chromatographic (GC)–mass spectrometric, and liquid chromatographic (LC)–mass spectrometric methods proposed for designer drug analyses. Basic information on extractions, derivatizations, GC columns, LC columns, detection limits, and linear ranges is also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AA:

Acetic anhydride

ACN:

Acetonitrile

N-Ac-2′-FMC:

N-Acetyl-2′-fluoromethacathinone

N-Ac-3′-FMC:

N-Acetyl-3′-fluoromethacathinone

N-Ac-4′-FMC:

N-Acetyl-4′-fluoromethacathinone

4-AcO-DIPT:

4-Acetoxy-N,N-diisopropyltryptamine

ALEPH:

2,5-Dimethoxy-4-methylthioamphetamine

ALEPH-2:

2,5-Dimethoxy-4-ethylthioamphetamine

ALEPH-5:

2,5-Dimethoxy-4-cyclohexylthioamphetamine

ALEPH-7:

2,5-Dimethoxy-4-(n)-propylthioamphetamine

AMT:

α-Methyltryptamine

AP:

Amphetamine

BDB:

2-Amino-1-(3,4-methylenedioxyphenyl)butane

4-Brom-2,5-dimethoxy-BZP:

4-Bromo-2,5-dimethoxybenzylpiperazine

2-Brom-4,5-dimethoxy-BZP:

2-Bromo-4,5-dimethoxybenzylpiperazine

5-Brom-2,4-dimethoxy-BZP:

5-Bromo-2,4-dimethoxybenzylpiperazine

BZP:

N-Benzylpiperazine

2C-B:

2,5-Dimethoxy-4-bromophenethylamine

2C-B-DragonFLY:

1-(8-Bromobenzo[1,2-b;4,5-b′]difuran-4-yl)-2-aminoethane

2C-B-FLY:

1-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b;4,5-b′]difuran-4-yl)-2-aminoethane

2C-C:

2,5-Dimethoxy-4-chlorophenethylamine

2C-D:

2,5-Dimethoxy-4-methyl-phenethylamine

CE:

Capillary electrophoresis

2C-E:

2,5-Dimethoxy-4-ethylphenethylamine

2C-H:

2,5-Dimethoxyphenethylamine

2C-I:

2,5-Dimethoxy-4-iodophenethylamine

2C-N:

2,5-Dimethoxy-4-nitrolphenethylamine

2-CPP:

1-(2-Chlorophenyl)piperazine

3-CPP:

1-(3-Chlorophenyl)piperazine, mCPP

4-CPP:

1-(4-Chlorophenyl)piperazine

2C series:

4-Substituted 2,5-dimethoxy phenethylamines

2C-T:

2,5-Dimethoxy-4-methylthiophenethylamine

2C-T-2:

2,5-Dimethoxy-4-ethylthiophenethylamine

2C-T-4:

2,5-Dimethoxy-4-isopropylthiophenethylamine

2C-T-5:

2,5-Dimethoxy-4-cyclohexylthiophenethylamine

2C-T-7:

2,5-Dimethoxy-4-(n)-propylthiophenethylamine

DIPT:

N,N-Diisopropyltryptamine

2,5-DMA:

2,5-Dimethoxyamphetamine

DMT:

N,N-Dimethyltryptamine

DOB:

2,5-Dimethoxy-4-bromoamphetamine

DOB-DragonFLY:

1-(8-Bromobenzo[1,2-b;4,5-b′]difuran-4-yl)-2-aminopropane

DOB-FLY:

1-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b;4,5-b′]difuran-4-yl)-2-aminopropane

DOC:

2,5-Dimethoxy-4-chloroamphetamine

DOET:

2,5-Dimethoxy-4-ethylamphetamine

DOI:

2,5-Dimethoxy-4-iodoamphetamine

DOM:

2,5-Dimethoxy-4-methyl-amphetamine

DOPR:

2,5-Dimethoxy-4-propylamphetamine

DPT:

N,N-Dipropyltryptamine

EAMP:

Ethylamphetamine

ECF:

Ethyl chloroformate

EP:

Ephedrine

2′-FMC:

2′-Fluoromethacathinone

3′-FMC:

3′-Fluoromethacathinone

4′-FMC:

4′-Fluoromethacathinone

4-FMP:

4-Fluoro-α-methyl-phenethylamine

GC:

Gas chromatography

HFBA:

Heptafluorobutyric anhydride

HMMA:

4-Hydroxy-3-methoxymethamphetamine

HMMA-Glu:

4-Hydroxy-3-methoxy-methamphetamine-glucuronide

HMMA-Sul:

4-Hydroxy-3-methoxy-methamphetamine-sulfate

5-HT:

5-Hydroxytryptamine, serotonin

IS:

Internal standard

JWH-018:

1-Naphthalenyl(1-pentyl-1H-indol-3-yl)methanone

LC:

Liquid chromatography

LLE:

Liquid–liquid extraction

LOD:

Limit of detection

LOQ:

Limit of quantitation

LSD:

Lysergic acid diethylamide

MA:

Methamphetamine

MBDB:

N-Methyl-benzodioxolylbutanamine

bk-MBDB:

2-Methylamino-1-(3,4-methylenedioxyphenyl)-butan-1-one, butylone

MBTFA:

N-Methylbis-(trifluoroacetamide)

MBZP:

1-Benzyl-4-methyl-piperazine

MDA:

3,4-Methylenedioxy-amphetamine

MDBZP:

1-(3,4-Methylenedioxybenzyl)-piperazine

bk-MDDMA:

2-Dimethylamino-1-(3,4-methylenedioxyphenyl)-propan-1-one

MDEA:

3,4-Methylenedioxy-N-ethylamphetamine

bk-MDEA:

2-Ethylamino-1-(3,4-methylenedioxyphenyl)-propan-1-one, ethylone

MDMA:

3,4-Methylenedioxymeth-amphetamine

bk-MDMA:

2-Methylamino-1-(3,4-methylenedioxyphenyl)-propan-1-one, methylone

MDPPP:

R,S-3′,4′-Methylenedioxy-α-pyrrolidinopropiophenone

MDPV:

3,4-Methylenedioxy-pyrovalerone

ME:

Methylephedrine

N-Me-DOB-DragtonFLY:

1-(8-Bromobenzo[1,2-b;4,5-b′]difuran-4-yl)-2-methylaminopropane

N-Me-DOB-FLY:

1-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b;4,5-b′]difuran-4-yl)-2-methylaminopropane

N-Me-4-FMP:

1-(4-Fluorophenyl)-N-methylpropan-2-amine

5-MeO-AMT:

5-Methoxy-α-methyltryptamine

5-MeO-DALT:

N,N-Diallyl-5-methoxytryptamine

5-MeO-DET:

5-Methoxy-N,N-diethyltryptamine

5-MeO-DIPT:

5-Methoxy-N,N-diisopropyltryptamine

5-MeO-DMT:

5-Methoxy-N,N-dimethyltryptamine

5-MeO-DPT:

5-Methoxy-N,N-di-n-propyltryptamine

5-MeO-EIPT:

5-Methoxy-N-ethyl-N-isopropyltryptamine

5-MeO-EPT:

N-Ethyl-5-methoxy-N-propyltryptamine

MeOH:

Methanol

5-MeO-MIPT:

N-Isopropyl-5-methoxy-N-methyltryptamine

MeOPP:

1-(4-Methoxyphenyl)piperazine

MIPT:

N-Methyl-N-isopropyltryptamine

MMDA:

3-Methoxy-4,5-methylenedioxyamphetamine

MOPPP:

R,S-4′-Methoxy-α-pyrrolidinopropiophenone

MPBP:

4′-Methyl-α-pyrrolidinobutyrophenone

MPHP:

4′-Methyl-α-pyrrolidinohexanophenone

2-MPP:

1-(2-Methoxyphenyl)piperazine

3-MPP:

1-(3-Methoxyphenyl)piperazine

4-MPP:

1-(4-Methoxyphenyl)piperazine

MPPP:

R,S-4′-Methyl-α-pyrrolidinopropiophenone

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MSTFA:

N-Methyl-N-trimethylsilyltri-fluoroacetamide

4-MTA:

4-Methylthioamphetamine

4-OH-DIPT:

4-Hydroxy-N,N-diisopropyltryptamine

4-OH-DMT:

4-Hydroxy-N,N-dimethyltryptamine

p-OH-MA:

4-Hydroxymethamphetamine

p-OH-MA-Glu:

4-Hydroxymethamphetamine-glucuronide

p-OH-MA-Sul:

4-Hydroxymethamphetamine-sulfate

N-OH-MDA:

N-Hydroxy-3,4-methylenedioxyamphetamine

N-OH-MDMA:

N-Hydroxy-3,4-methylenedioxy-methamphetamine

3-OH-4-MeO-MA:

3-Hydroxy-4-methoxymethamphetamine

PCEEA:

N-(1-Phenylcyclohexyl)-2-ethoxyethanamine

PCMEA:

N-(1-Phenylcyclohexyl)-2-methoxyethanamine

PCMPA:

N-(1-Phenylcyclohexyl)-3-methoxypropanamine

PCPR:

N-(1-Phenylcyclohexyl)-propanamine

PDMS:

Polydimethylsiloxane

PEA:

β-Phenethylamine

PFPA:

Pentafluoropropionic anhydride

PMA:

p-Methoxyamphetamine

PMEA:

p-Methoxyethylamphetamine

PMMA:

p-Methoxymethamphetamine

PPA:

Phenylpropanolamine

PPP:

R,S-α-Pyrrolidinopropiophenone

PVP:

1-Phenyl-2-pyrrolidin-1-ylphentan-1-one, α-pyrrolidinovaleophenone

SERT:

Serotonin transporter

SIM:

Selected ion monitoring

SPDE:

Solid-phase dynamic extraction

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

TFA:

Trifluoroacetic acid

TFAA:

Trifluoroacetic anhydride

TFMPP:

1-(3-Trifluoromethyl)-piperazine

TFAP:

S-(−)-N-(Trifluoroacetyl)propyl chloride

TLC:

Thin-layer chromatography

TMA-1:

3,4,5-Trimethoxyamphetamine

TMA-2:

2,4,5-Trimethoxyamphetamine

TMA-3:

2,3,4-Trimethoxyamphetamine

TMA-4:

2,3,5-Trimethoxyamphetamine

TMA-5:

2,3,6-Trimethoxyamphetamine

TMA-6:

2,4,6-Trimethoxyamphetamine

TMF:

3-Methylfentanyl

TMSCI:

Trimethylsilylchloride

TOFMS:

Time-of-flight mass spectrometry

TPC:

Trifluoroacetyl-l-propylchloride

UPLC:

Ultra performance liquid chromatography

UV:

Ultraviolet

References

  1. Kraemer T, Maurer HH (1998) Determination of amphetamine, methamphetamine and amphetamine-derived designer drugs or medicaments in blood and urine. J Chromatogr B 713:163–187

    Article  CAS  Google Scholar 

  2. Drummer OH (1999) Chromatographic screening techniques in systematic toxicological analysis. J Chromatogr B 733:27–45

    Article  CAS  Google Scholar 

  3. Thevis M, Schänzer W (2007) Mass spectrometry in sports drug testing: structure characterization and analytical assays. Mass Spectrom Rev 26:79–107

    Article  CAS  PubMed  Google Scholar 

  4. Maurer HH (2009) Mass spectrometric approaches in impaired driving toxicology. Anal Bioanal Chem 393:97–107

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi M, Nagashima M, Suzuki J, Seto T, Yasuda I, Yoshida T (2009) Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta 77:1245–1272

    Article  CAS  PubMed  Google Scholar 

  6. Shulgin A, Shulgin A (1991) Pihkal: a chemical love story. Transform Press, Berkeley

    Google Scholar 

  7. Shulgin A, Shulgin A (1997) Tihkal: the continuation. Transform Press, Berkeley

    Google Scholar 

  8. Sekera MH, Ahrens BD, Chang YC, Starcevic B, Georgakopoulos C, Catlin DH (2005) Another designer steroid: discovery, synthesis, and detection of ‘madol’ in urine. Rapid Commun Mass Spectrom 19:781–784

    Article  CAS  PubMed  Google Scholar 

  9. Thevis M, Geyer H, Mareck U, Schänzer W (2005) Screening for unknown synthetic steroids in human urine by liquid chromatography–tandem mass spectrometry. J Mass Spectrom 40:955–962

    Article  CAS  PubMed  Google Scholar 

  10. Nielen MW, Bovee TF, van Engelen MC, Rutgers P, Hamers AR, van Rhijn JH, Hoogenboom LR (2006) Urine testing for designer steroids by liquid chromatography with androgen bioassay detection and electrospray quadrupole time-of-flight mass spectrometry identification. Anal Chem 78:424–431

    Article  CAS  PubMed  Google Scholar 

  11. De Brabander HF, Verheyden K, Mortier V, Le Bizec B, Verbeke W, Courtheyn D, Noppe H (2007) Phytosterols and anabolic agents versus designer drugs. Anal Chim Acta 586:49–56

    Article  PubMed  CAS  Google Scholar 

  12. Georgakopoulos CG, Vonaparti A, Stamou M, Kiousi P, Lyris E, Angelis YS, Tsoupras G, Wuest B, Nielen MW, Panderi I, Koupparis M (2007) Preventive doping control analysis: liquid and gas chromatography time-of-flight mass spectrometry for detection of designer steroids. Rapid Commun Mass Spectrom 21:2439–2446

    Article  CAS  PubMed  Google Scholar 

  13. Vonaparti A, Lyris E, Angelis YS, Panderi I, Koupparis M, Tsantili-Kakoulidou A, Peters RJ, Nielen MW, Georgakopoulos C (2010) Preventive doping control screening analysis of prohibited substances in human urine using rapid-resolution liquid chromatography/high-resolution time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 24:1595–1609

    Article  CAS  PubMed  Google Scholar 

  14. Rothman RB, Glowa JR (1995) A review of the effects of dopaminergic agents on humans, animals, and drug-seeking behavior, and its implications for medication development. Focus on GBR 12909. Mol Neurobiol 11:1–19

    Article  CAS  PubMed  Google Scholar 

  15. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  CAS  PubMed  Google Scholar 

  16. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  CAS  PubMed  Google Scholar 

  17. Lyon RA, Glennon RA, Titeler M (1986) 3, 4-Methylenedioxymethamphetamine (MDMA): stereoselective interactions at brain 5-HT1 and 5-HT2 receptors. Psychopharmacology 88:525–526

    Article  CAS  PubMed  Google Scholar 

  18. Rudnick G, Wall SC (1992) The molecular mechanism of “ecstasy” [3, 4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci USA 89:1817–1821

    Article  CAS  PubMed  Google Scholar 

  19. Monte AP, Marona-Lewicka D, Parker MA, Wainscott DB, Nelson DL, Nichols DE (1996) Dihydrobenzofuran analogues of hallucinogens. 3. Models of 4-substituted (2,5-dimethoxyphenyl)alkylamine derivatives with rigidified methoxy groups. J Med Chem 39:2953–2961

    Article  CAS  PubMed  Google Scholar 

  20. Rothman RB, Baumann MH (2002) Therapeutic and adverse actions of serotonin transporter substrates. Pharmacol Ther 95:73–88

    Article  CAS  PubMed  Google Scholar 

  21. Nichols DE (1986) Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoact Drugs 18:305–313

    CAS  Google Scholar 

  22. Sogawa C, Sogawa N, Tagawa J, Fujino A, Ohyama K, Asanuma M, Funada M, Kitayama S (2007) 5-Methoxy-N,N-diisopropyltryptamine (Foxy), a selective and high affinity inhibitor of serotonin transporter. Toxicol Lett 170:75–82

    Article  CAS  PubMed  Google Scholar 

  23. Fantegrossi WE, Harrington AW, Kiessel CL, Eckler JR, Rabin RA, Winter JC, Coop A, Rice KC, Woods JH (2006) Hallucinogen-like actions of 5-methoxy-N,N-diisopropyltryptamine in mice and rats. Pharmacol Biochem Behav 83:122–129

    Article  CAS  PubMed  Google Scholar 

  24. Nagai F, Nonaka R, Satoh H, Kamimura K (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559:132–137

    Article  CAS  PubMed  Google Scholar 

  25. Nakagawa T, Kaneko S (2008) Neuropsychotoxicity of abused drugs: molecular and neural mechanisms of neuropsychotoxicity induced by methamphetamine, 3,4-methylenedioxymethamphetamine (ecstasy), and 5-methoxy-N,N-diisopropyltryptamine (foxy). J Pharmacol Sci 106:2–8

    Article  CAS  PubMed  Google Scholar 

  26. Kraemer T, Maurer HH (2002) Toxicokinetics of amphetamines: metabolism and toxicokinetic data of designer drugs, amphetamine, methamphetamine, and their N-alkyl derivatives. Ther Drug Monit 24:277–289

    Article  CAS  PubMed  Google Scholar 

  27. Maurer HH, Kraemer T, Springer D, Staack RF (2004) Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (ecstasy), piperazine, and pyrrolidinophenone types: a synopsis. Ther Drug Monit 26:127–131

    Article  CAS  PubMed  Google Scholar 

  28. Staack RF, Maurer HH (2005) Metabolism of designer drugs of abuse. Curr Drug Metab 6:259–274

    Article  CAS  PubMed  Google Scholar 

  29. Meyer MR, Maurer HH (2010) Metabolism of designer drugs of abuse: an updated review. Curr Drug Metab 11:468–482

    Article  CAS  PubMed  Google Scholar 

  30. Sitaram BR, Lockett L, Talomsin R, Blackman GL, McLeod WR (1987) In vivo metabolism of 5-methoxy-N,N-dimethyltryptamine and N,N-dimethyltryptamine in the rat. Biochem Pharmacol 36:1509–1512

    Article  CAS  PubMed  Google Scholar 

  31. Meatherall R, Sharma P (2003) Foxy, a designer tryptamine hallucinogen. J Anal Toxicol 27:313–317

    CAS  PubMed  Google Scholar 

  32. Wilson JM, McGeorge F, Smolinske S, Meatherall R (2005) A foxy intoxication. Forensic Sci Int 148:31–36

    Article  CAS  PubMed  Google Scholar 

  33. Kamata T, Katagi M, Kamata HT, Miki A, Shima N, Zaitsu K, Nishikawa M, Tanaka E, Honda K, Tsuchihashi H (2006) Metabolism of the psychotomimetic tryptamine derivative 5-methoxy-N,N-diisopropyltryptamine in humans: identification and quantification of its urinary metabolites. Drug Metab Dispos 34:281–287

    Article  CAS  PubMed  Google Scholar 

  34. Kamata T, Katagi M, Tsuchihashi H (2010) Metabolism and toxicological analyses of hallucinogenic tryptamine analogues being abused in Japan. Forensic Toxicol 28:1–8

    Article  CAS  Google Scholar 

  35. Dal Cason TA (1997) The characterization of some 3,4-methylenedioxycathinone (MDCATH) homologs. Forensic Sci Int 87:9–53

    Article  CAS  Google Scholar 

  36. Matsuda K, Fukuzawa T, Ishii Y, Yamada H (2007) Color reaction of 3,4-methylenedioxyamphetamines with chromotropic acid: its improvement and application to the screening of seized tablets. Forensic Toxicol 25:37–40

    Article  CAS  Google Scholar 

  37. Nakamoto A, Namera A, Yahata M, Kuramoto T, Nishida M, Yashiki M (2007) A systematic toxicological analysis for hallucinogenic tryptamines in seized and biological materials (in Japanese with English abstract). Hiroshima Igaku Zasshi 55:1–14

    CAS  Google Scholar 

  38. Uchiyama N, Kawamura M, Kamakura H, Kikura-Hanajiri R, Goda Y (2008) Analytical data of designated substances (Shitei-Yakubutsu) controlled by the Pharmaceutical Affairs Law in Japan, part II: color test and TLC (in Japanese with English abstract). Yakugaku Zasshi 128:981–987

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi M, Nagashima M, Suzuki J, Seto T, Yasuda I, Yoshida T (2008) Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography–mass spectrometry. J Health Sci 54:89–96

    Article  CAS  Google Scholar 

  40. Kudo K, Ishida T, Hikiji W, Hayashida M, Uekusa K, Usumoto Y, Tsuji A, Ikeda N (2009) Construction of calibration-locking databases for rapid and reliable drug screening by gas chromatography-mass spectrometry. Forensic Toxicol 27:21–31

    Article  CAS  Google Scholar 

  41. Ishida T, Kudo K, Inoue H, Tsuji A, Kojima T, Ikeda N (2006) Rapid screening for and simultaneous semiquantitative analysis of thirty abused drugs in human urine samples using gas chromatography–mass spectrometry. J Anal Toxicol 30:468–477

    CAS  PubMed  Google Scholar 

  42. Vorce SP, Sklerov JH (2004) A general screening and confirmation approach to the analysis of designer tryptamines and phenethylamines in blood and urine using GC–EI–MS and HPLC–electrospray–MS. J Anal Toxicol 28:407–410

    CAS  PubMed  Google Scholar 

  43. Peters FT, Schaefer S, Staack RF, Kraemer T, Maurer HH (2003) Screening for and validated quantification of amphetamines and of amphetamine- and piperazine-derived designer drugs in human blood plasma by gas chromatography/mass spectrometry. J Mass Spectrom 38:659–676

    Article  CAS  PubMed  Google Scholar 

  44. Zaitsu K, Katagi M, Kamata H, Nakanishi K, Shima N, Kamata T, Nishioka H, Miki A, Tatsuno M, Tsuchihashi H (2010) Simultaneous analysis of six novel hallucinogenic (tetrahydrobenzodifuranyl)aminoalkanes (FLYs) and (benzodifuranyl)aminoalkanes (DragonFLYs) by GC–MS, LC–MS, and LC–MS–MS. Forensic Toxicol 28:9–18

    Article  CAS  Google Scholar 

  45. Tsujikawa K, Kuwayama K, Miyaguchi H, Kanamori T, Iwata YT, Inoue H (2010) Increase in split ratio enables detection of underivatized N-hydroxy-3,4-methylenedioxymethamphetamine and N-hydroxy-3,4-methylenedioxyamphetamine by capillary GC–MS. Forensic Toxicol 28:55–57

    Article  Google Scholar 

  46. Meyer MR, Wilhelm J, Peters FT, Maurer HH (2010) Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography–mass spectrometry. Anal Bioanal Chem 397:1225–1233

    Article  CAS  PubMed  Google Scholar 

  47. Westphal F, Rösner P, Junge T (2010) Differentiation of regioisomeric ring-substituted fluorophenethylamines with product ion spectrometry. Forensic Sci Int 194:53–59

    Article  CAS  PubMed  Google Scholar 

  48. Camilleri A, Johnston MR, Brennan M, Davis S, Caldicott DG (2010) Chemical analysis of four capsules containing the controlled substance analogues 4-methylmethcathinone, 2-fluoromethamphetamine, α-phthalimidopropiophenone and N-ethylcathinone. Forensic Sci Int 197:59–66

    Article  CAS  PubMed  Google Scholar 

  49. Sauer C, Peters FT, Haas C, Meyer MR, Fritschi G, Maurer HH (2009) New designer drug α-pyrrolidinovalerophenone (PVP): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 44:952–964

    Article  CAS  PubMed  Google Scholar 

  50. Fujii H, Hara K, Kageura M, Kashiwagi M, Matsusue A, Kubo S (2009) High throughput chiral analysis of urinary amphetamines by GC–MS using a short narrow-bore capillary column. Forensic Toxicol 27:75–80

    Article  CAS  Google Scholar 

  51. Rohanova M, Balikova M (2009) Studies on distribution and metabolism of p-methoxymethamphetamine (PMMA) in rats after subcutaneous administration. Toxicology 259:61–68

    Article  CAS  PubMed  Google Scholar 

  52. Andreasen MF, Telving R, Birkler RI, Schumacher B, Johannsen M (2009) A fatal poisoning involving Bromo-Dragonfly. Forensic Sci Int 183:91–96

    Article  CAS  PubMed  Google Scholar 

  53. Archer RP (2009) Fluoromethcathinone, a new substance of abuse. Forensic Sci Int 185:10–20

    Article  CAS  PubMed  Google Scholar 

  54. Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, Tsuchihashi H, Mori Y (2009) Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int 188:131–139

    Article  CAS  PubMed  Google Scholar 

  55. Westphal F, Junge T, Rösner P, Sönnichsen F, Schuster F (2009) Mass and NMR spectroscopic characterization of 3,4-methylenedioxypyrovalerone: a designer drug with α-pyrrolidinophenone structure. Forensic Sci Int 190:1–8

    Article  CAS  PubMed  Google Scholar 

  56. Strano-Rossi S, Botrè F, Bermejo AM, Tabernero MJ (2009) A rapid method for the extraction, enantiomeric separation and quantification of amphetamines in hair. Forensic Sci Int 193:95–100

    Article  CAS  PubMed  Google Scholar 

  57. Zaitsu K, Katagi M, Kamata HT, Miki A, Tsuchihashi H (2008) Discrimination and identification of regioisomeric β-keto analogues of 3,4-methylenedioxyamphetamines by gas chromatography–mass spectrometry. Forensic Toxicol 26:45–51

    Article  CAS  Google Scholar 

  58. Kanai K, Takekawa K, Kumamoto T, Ishikawa T, Ohmori T (2008) Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC–MS, and GC–MS. Forensic Toxicol 26:6–12

    Article  CAS  Google Scholar 

  59. Zaitsu K, Katagi M, Kamata H, Kamata T, Shima N, Miki A, Iwamura T, Tsuchihashi H (2008) Discrimination and identification of the six aromatic positional isomers of trimethoxyamphetamine (TMA) by gas chromatography-mass spectrometry (GC–MS). J Mass Spectrom 43:528–534

    Article  CAS  PubMed  Google Scholar 

  60. Ewald AH, Ehlers D, Maurer HH (2008) Metabolism and toxicological detection of the designer drug 4-chloro-2,5-dimethoxyamphetamine in rat urine using gas chromatography–mass spectrometry. Anal Bioanal Chem 390:1837–1842

    Article  CAS  PubMed  Google Scholar 

  61. Ewald AH, Puetz M, Maurer HH (2008) Designer drug 2,5-dimethoxy-4-methyl-amphetamine (DOM, STP): involvement of the cytochrome P450 isoenzymes in formation of its main metabolite and detection of the latter in rat urine as proof of a drug intake using gas chromatography-mass spectrometry. J Chromatogr B 862:252–256

    Article  CAS  Google Scholar 

  62. Zaitsu K, Katagi M, Kamata T, Kamata H, Shima N, Tsuchihashi H, Hayashi T, Kuroki H, Matoba R (2008) Determination of a newly encountered designer drug “p-methoxyethylamphetamine” and its metabolites in human urine and blood. Forensic Sci Int 177:77–84

    Article  CAS  PubMed  Google Scholar 

  63. Kudo K, Ishida T, Hara K, Kashimura S, Tsuji A, Ikeda N (2007) Simultaneous determination of 13 amphetamine related drugs in human whole blood using an enhanced polymer column and gas chromatography-mass spectrometry. J Chromatogr B 855:115–120

    Article  CAS  Google Scholar 

  64. Westphal F, Junge T, Rösner P, Fritschi G, Klein B, Girreser U (2007) Mass spectral and NMR spectral data of two new designer drugs with an α-aminophenone structure: 4′-methyl-α-pyrrolidinohexanophenone and 4′-methyl-α-pyrrolidinobutyrophenone. Forensic Sci Int 169:32–42

    Article  CAS  PubMed  Google Scholar 

  65. da Costa JL, Wang AY, Micke GA, Maldaner AO, Romano RL, Martins-Júnior HA, Negrini Neto O, Tavares MF (2007) Chemical identification of 2,5-dimethoxy-4-bromoamphetamine (DOB). Forensic Sci Int 173:130–136

    Article  PubMed  CAS  Google Scholar 

  66. Kikura-Hanajiri R, Kawamura M, Saisho K, Kodama Y, Goda Y (2007) The disposition into hair of new designer drugs; methylone, MBDB and methcathinone. J Chromatogr B 855:121–126

    Article  CAS  Google Scholar 

  67. Theobald DS, Fritschi G, Maurer HH (2007) Studies on the toxicological detection of the designer drug 4-bromo-2,5-dimethoxy-β-phenethylamine (2C-B) in rat urine using gas chromatography–mass spectrometry. J Chromatogr B 846:374–377

    Article  CAS  Google Scholar 

  68. Ewald AH, Fritschi G, Maurer HH (2007) Metabolism and toxicological detection of the designer drug 4-iodo-2,5-dimethoxy-amphetamine (DOI) in rat urine using gas chromatography–mass spectrometry. J Chromatogr B 857:170–174

    Article  CAS  Google Scholar 

  69. Yahata M, Namera A, Nishida M, Yashiki M, Kuramoto T, Kimura K (2006) In-matrix derivatization and automated headspace solid-phase microextraction for GC–MS determination of amphetamine-related drugs in human hair. Forensic Toxicol 24:51–57

    Article  CAS  Google Scholar 

  70. Theobald DS, Maurer HH (2006) Studies on the metabolism and toxicological detection of the designer drug 2,5-dimethoxy-4-methyl-β-phenethylamine (2C-D) in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 41:1509–1519

    Article  CAS  PubMed  Google Scholar 

  71. Theobald DS, Pütz M, Schneider E, Maurer HH (2006) New designer drug 4-iodo-2,5-dimethoxy-β-phenethylamine (2C-I): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric and capillary electrophoretic/mass spectrometric techniques. J Mass Spectrom 41:872–886

    Article  CAS  PubMed  Google Scholar 

  72. Theobald DS, Maurer HH (2006) Studies on the metabolism and toxicological detection of the designer drug 4-ethyl-2,5-dimethoxy-β-phenethylamine (2C-E) in rat urine using gas chromatographic-mass spectrometric techniques. J Chromatogr B 842:76–90

    Article  CAS  Google Scholar 

  73. Rösner P, Quednow B, Girreser U, Junge T (2005) Isomeric fluoro-methoxy-phenylalkylamines: a new series of controlled-substance analogues (designer drugs). Forensic Sci Int 148:143–156

    Article  PubMed  CAS  Google Scholar 

  74. Klette KL, Jamerson MH, Morris-Kukoski CL, Kettle AR, Snyder JJ (2005) Rapid simultaneous determination of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, and 3,4-methylenedioxyethylamphetamine in urine by fast gas chromatography–mass spectrometry. J Anal Toxicol 29:669–674

    CAS  PubMed  Google Scholar 

  75. Han E, Yang W, Lee J, Park Y, Kim E, Lim M, Chung H (2005) The prevalence of MDMA/MDA in both hair and urine in drug users. Forensic Sci Int 152:73–77

    Article  CAS  PubMed  Google Scholar 

  76. Peters FT, Meyer MR, Fritschi G, Maurer HH (2005) Studies on the metabolism and toxicological detection of the new designer drug 4′-methyl-α-pyrrolidinobutyrophenone (MPBP) in rat urine using gas chromatography–mass spectrometry. J Chromatogr B 824:81–91

    Article  CAS  Google Scholar 

  77. Ewald AH, Peters FT, Weise M, Maurer HH (2005) Studies on the metabolism and toxicological detection of the designer drug 4-methylthioamphetamine (4-MTA) in human urine using gas chromatography–mass spectrometry. J Chromatogr B 824:123–131

    Article  CAS  Google Scholar 

  78. Carmo H, de Boer D, Remião F, Carvalho F, dos Reys LA, de Lourdes Bastos M (2004) Metabolism of the designer drug 4-bromo-2, 5-dimethoxyphenethylamine (2C-B) in mice, after acute administration. J Chromatogr B 811:143–152

    CAS  Google Scholar 

  79. Staack RF, Fehn J, Maurer HH (2003) New designer drug p-methoxymethamphetamine: studies on its metabolism and toxicological detection in urine using gas chromatography–mass spectrometry. J Chromatogr B 789:27–41

    Article  CAS  Google Scholar 

  80. Springer D, Peters FT, Fritschi G, Maurer HH (2003) New designer drug 4′-methyl-α-pyrrolidinohexanophenone: studies on its metabolism and toxicological detection in urine using gas chromatography–mass spectrometry. J Chromatogr B 789:79–91

    Article  CAS  Google Scholar 

  81. Springer D, Fritschi G, Maurer HH (2003) Metabolism and toxicological detection of the new designer drug 4′-methoxy-α-pyrrolidinopropiophenone studied in rat urine using gas chromatography–mass spectrometry. J Chromatogr B 793:331–342

    Article  CAS  Google Scholar 

  82. Springer D, Fritschi G, Maurer HH (2003) Metabolism and toxicological detection of the new designer drug 3′,4′-methylenedioxy-α-pyrrolidinopropiophenone studied in urine using gas chromatography–mass spectrometry. J Chromatogr B 793:377–388

    Article  CAS  Google Scholar 

  83. Springer D, Fritschi G, Maurer HH (2003) Metabolism of the new designer drug α-pyrrolidinopropiophenone (PPP) and the toxicological detection of PPP and 4’-methyl-α-pyrrolidinopropiophenone (MPPP) studied in rat urine using gas chromatography-mass spectrometry. J Chromatogr B 796:253–266

    Article  CAS  Google Scholar 

  84. Musshoff F, Lachenmeier DW, Kroener L, Madea B (2002) Automated headspace solid-phase dynamic extraction for the determination of amphetamines and synthetic designer drugs in hair samples. J Chromatogr A 958:231–238

    Article  CAS  PubMed  Google Scholar 

  85. Springer D, Peters FT, Fritschi G, Maurer HH (2002) Studies on the metabolism and toxicological detection of the new designer drug 4′-methyl-α-pyrrolidinopropiophenone in urine using gas chromatography–mass spectrometry. J Chromatogr B 773:25–33

    Article  CAS  Google Scholar 

  86. Maurer HH, Bickeboeller-Friedrich J, Kraemer T, Peters FT (2000) Toxicokinetics and analytical toxicology of amphetamine-derived designer drugs (‘Ecstasy’). Toxicol Lett 112–113:133–142

    Article  PubMed  Google Scholar 

  87. Ensslin HK, Kovar KA, Maurer HH (1996) Toxicological detection of the designer drug 3,4-methylenedioxyethylamphetamine (MDE, “Eve”) and its metabolites in urine by gas chromatography–mass spectrometry and fluorescence polarization immunoassay. J Chromatogr B 683:189–197

    Article  CAS  Google Scholar 

  88. Nakamoto A, Namera A, Nishida M, Yashiki M, Kuramoto T, Kimura K (2007) Identification and quantitative determination of 5-methoxy-N,N-di-n-propyltryptamine in urine by isotope dilution gas chromatography–mass spectrometry. Forensic Toxicol 25:1–7

    Article  CAS  Google Scholar 

  89. Itokawa M, Iwata K, Takahashi M, Sugihara G, Sasaki T, Abe Y, Uno M, Hobo M, Jitoku D, Inoue K, Arai M, Yasuda I, Shintani M (2007) Acute confusional state after designer tryptamine abuse. Psychiatry Clin Neurosci 61:196–199

    Article  CAS  PubMed  Google Scholar 

  90. Westphal F, Junge T, Girreser U, Stobbe S, Pérez SB (2009) Structure elucidation of a new designer benzylpiperazine: 4-bromo-2,5-dimethoxybenzylpiperazine. Forensic Sci Int 187:87–96

    Article  CAS  PubMed  Google Scholar 

  91. Tsutsumi H, Katagi M, Miki A, Shima N, Kamata T, Nishikawa M, Nakajima K, Tsuchihashi H (2005) Development of simultaneous gas chromatography–mass spectrometric and liquid chromatography-electrospray ionization mass spectrometric determination method for the new designer drugs, N-benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl)piperazine (TFMPP) and their main metabolites in urine. J Chromatogr B 819:315–322

    Article  CAS  Google Scholar 

  92. Staack RF, Maurer HH (2003) Piperazine-derived designer drug 1-(3-chlorophenyl)piperazine (mCPP): GC–MS studies on its metabolism and its toxicological detection in rat urine including analytical differentiation from its precursor drugs trazodone and nefazodone. J Anal Toxicol 27:560–568

    CAS  PubMed  Google Scholar 

  93. Staack RF, Maurer HH (2003) Toxicological detection of the new designer drug 1-(4-methoxyphenyl)piperazine and its metabolites in urine and differentiation from an intake of structurally related medicaments using gas chromatography-mass spectrometry. J Chromatogr B 798:333–342

    Article  CAS  Google Scholar 

  94. Staack RF, Fritschi G, Maurer HH (2002) Studies on the metabolism and toxicological detection of the new designer drug N-benzylpiperazine in urine using gas chromatography–mass spectrometry. J Chromatogr B 773:35–46

    Article  CAS  Google Scholar 

  95. de Boer D, Bosman IJ, Hidvégi E, Manzoni C, Benkö AA, dos Reys LJ, Maes RA (2001) Piperazine-like compounds: a new group of designer drugs-of-abuse on the European market. Forensic Sci Int 121:47–56

    Article  PubMed  Google Scholar 

  96. Sato S, Suzuki S, Lee XP, Sato K (2010) Studies on 1-(2-phenethyl)-4-(N-propionylanilino)piperidine (fentanyl) and related compounds VII. Quantification of α-methylfentanyl metabolites excreted in rat urine. Forensic Sci Int 195:68–72

    Article  CAS  PubMed  Google Scholar 

  97. Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2008) New designer drugs N-(1-phenylcyclohexyl)-2-ethoxyethanamine (PCEEA) and N-(1-phenylcyclohexyl)-2-methoxyethanamine (PCMEA): studies on their metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 43:305–316

    Article  CAS  PubMed  Google Scholar 

  98. Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2008) Metabolism and toxicological detection of the designer drug N-(1-phenylcyclohexyl)-3-methoxypropanamine (PCMPA) in rat urine using gas chromatography-mass spectrometry. Forensic Sci Int 181:47–51

    Article  CAS  PubMed  Google Scholar 

  99. Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2008) Metabolism and toxicological detection of a new designer drug, N-(1-phenylcyclohexyl)propanamine, in rat urine using gas chromatography–mass spectrometry. J Chromatogr A 1186:380–390

    Article  CAS  PubMed  Google Scholar 

  100. Uchiyama N, Kikura-Hanajiri R, Ogata J, Goda Y (2010) Chemical analysis of synthetic cannabinoids as designer drugs in herbal products. Forensic Sci Int 198:31–38

    Article  CAS  PubMed  Google Scholar 

  101. Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2009) Identification of a cannabimimetic indole as a designer drug in a herbal product. Forensic Toxicol 27:61–66

    Article  CAS  Google Scholar 

  102. Wohlfarth A, Weinmann W, Dresen S (2010) LC–MS/MS screening method for designer amphetamines, tryptamines, and piperazines in serum. Anal Bioanal Chem 396:2403–2414

    Article  CAS  PubMed  Google Scholar 

  103. Pichini S, Pujadas M, Marchei E, Pellegrini M, Fiz J, Pacifici R, Zuccaro P, Farré M, de la Torre R (2008) Liquid chromatography-atmospheric pressure ionization electrospray mass spectrometry determination of “hallucinogenic designer drugs” in urine of consumers. J Pharm Biomed Anal 47:335–342

    Article  CAS  PubMed  Google Scholar 

  104. Concheiro M, de Castro A, Quintela O, López-Rivadulla M, Cruz A (2006) Determination of drugs of abuse and their metabolites in human plasma by liquid chromatography-mass spectrometry. An application to 156 road fatalities. J Chromatogr B 832:81–89

    Article  CAS  Google Scholar 

  105. Kikura-Hanajiri R, Kawamura M, Miyajima A, Sunouchi M, Goda Y (2010) Determination of a new designer drug, N-hydroxy-3,4-methylenedioxymethamphetamine and its metabolites in rats using ultra-performance liquid chromatography–tandem mass spectrometry. Forensic Sci Int 198:62–69

    Article  CAS  PubMed  Google Scholar 

  106. Nieddu M, Boatto G, Pirisi MA, Baralla E (2009) Multi-residue analysis of eight thioamphetamine designer drugs in human urine by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 23:3051–3056

    Article  CAS  PubMed  Google Scholar 

  107. Tabernero MJ, Felli ML, Bermejo AM, Chiarotti M (2009) Determination of ketamine and amphetamines in hair by LC/MS/MS. Anal Bioanal Chem 395:2547–2557

    Article  CAS  PubMed  Google Scholar 

  108. Shima N, Katagi M, Kamata H, Zaitsu K, Kamata T, Miki A, Tsuchihashi H, Sakuma T, Nemoto N (2008) Conjugates of p-hydroxymethamphetamine and 4-hydroxy-3-methoxymethamphetamine in blood obtained from methamphetamine and 3,4-methylenedioxymethamphetamine users: analysis by LC–MS–MS. Forensic Toxicol 26:58–65

    Article  CAS  Google Scholar 

  109. Nieddu M, Boatto G, Pirisi MA, Azara E, Marchetti M (2008) LC-MS analysis of trimethoxyamphetamine designer drugs (TMA series) from urine samples. J Chromatogr B 867:126–130

    Article  CAS  Google Scholar 

  110. Shima N, Kamata H, Katagi M, Tsuchihashi H, Sakuma T, Nemoto N (2007) Direct determination of glucuronide and sulfate of 4-hydroxy-3-methoxymethamphetamine, the main metabolite of MDMA, in human urine. J Chromatogr B 857:123–129

    Article  CAS  Google Scholar 

  111. Kłys M, Rojek S, Woźniak K, Rzepecka-Woźniak E (2007) Fatality due to the use of a designer drug MDMA (Ecstasy). Legal Med 9:185–191

    Article  PubMed  CAS  Google Scholar 

  112. Bogusz MJ, Krüger KD, Maier RD (2000) Analysis of underivatized amphetamines and related phenethylamines with high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Anal Toxicol 24:77–84

    CAS  PubMed  Google Scholar 

  113. Vorce SP, Holler JM, Levine B, Past MR (2008) Detection of 1-benzylpiperazine and 1-(3-trifluoromethylphenyl)-piperazine in urine analysis specimens using GC–MS and LC–ESI–MS. J Anal Toxicol 32:444–450

    CAS  PubMed  Google Scholar 

  114. Ojanperä I, Gergov M, Liiv M, Riikoja A, Vuori E (2008) An epidemic of fatal 3-methylfentanyl poisoning in Estonia. Int J Legal Med 122:395–400

    Article  PubMed  Google Scholar 

  115. Reepmeyer JC, Woodruff JT (2006) Use of liquid chromatography-mass spectrometry and a hydrolytic technique for the detection and structure elucidation of a novel synthetic vardenafil designer drug added illegally to a “natural” herbal dietary supplement. J Chromatogr A 1125:67–75

    Article  CAS  PubMed  Google Scholar 

  116. McDowall RD (1989) Sample preparation for biomedical analysis. J Chromatogr 492:3–58

    Article  CAS  PubMed  Google Scholar 

  117. Zhang N, Hoffman KL, Li W, Rossi DT (2000) Semi-automated 96-well liquid–liquid extraction for quantitation of drugs in biological fluids. J Pharm Biomed Anal 22:131–138

    Article  PubMed  Google Scholar 

  118. Hennion MC (1999) Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A 856:3–54

    Article  CAS  PubMed  Google Scholar 

  119. Kamata T, Nishikawa M, Katagi M, Tsuchihashi H (2006) Direct detection of serum psilocin glucuronide by LC/MS and LC/MS/MS: time-courses of total and free (unconjugated) psilocin concentrations in serum specimens of a “magic mushroom” user. Forensic Toxicol 24:36–40

    Article  CAS  Google Scholar 

  120. Grieshaber AF, Moore KA, Levine B (2001) The detection of psilocin in human urine. J Forensic Sci 46:627–630

    CAS  PubMed  Google Scholar 

  121. Kamata T, Nishikawa M, Katagi M, Tsuchihashi H (2003) Optimized glucuronide hydrolysis for the detection of psilocin in human urine samples. J Chromatogr B 796:421–427

    Article  CAS  Google Scholar 

  122. Inoue T, Suzuki S, Niwaguchi T (1983) Stability of perfluoroacyl derivatives of methamphetamine and its metabolites (in Japanese with English abstract). Eisei Kagaku 29:412–417

    CAS  Google Scholar 

  123. Delbeke FT, Debackere M, Jonckheere JA, De Leenheer AP (1983) Pentafluorobenzoyl derivatives of doping agents: I. Extractive benzoylation and gas chromatography with electron-capture detection of primary and secondary amines. J Chromatogr 273:141–149

    Article  CAS  PubMed  Google Scholar 

  124. Husek P (1991) Rapid derivatization and gas chromatographic determination of amino acids. J Chromatogr A 552:289–299

    Article  CAS  Google Scholar 

  125. Meatherall R (1995) Rapid GC–MS confirmation of urinary amphetamine and methamphetamine as their propylchloroformate derivatives. J Anal Toxicol 19:316–322

    CAS  PubMed  Google Scholar 

  126. Birkmayer W, Riederer P, Youdim MB (1982) (−)Deprenyl in the treatment of Parkinson’s disease. Clin Neuropharmacol 5:195–230

    Article  CAS  PubMed  Google Scholar 

  127. Tarjányi Z, Kalász H, Szebeni G, Hollósi I, Báthori M, Fürst S (1998) Gas-chromatographic study on the stereoselectivity of deprenyl metabolism. J Pharm Biomed Anal 17:725–731

    Article  PubMed  Google Scholar 

  128. Pharmaceutical Society of Japan (ed) (2006) Standard methods of chemical analysis in poisoning with commentary, 2006—analysis, toxicity and treatment (in Japanese). Tokyo Kagaku Dojin, Tokyo

Download references

Acknowledgments

The authors thank Dr. Kunio Gonmori, Hamamatsu University School of Medicine, Hamamatsu, Japan, for his technical support and Professor Osamu Suzuki, Chief Editor of Forensic Toxicology, for providing the opportunity to write this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Namera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namera, A., Nakamoto, A., Saito, T. et al. Colorimetric detection and chromatographic analyses of designer drugs in biological materials: a comprehensive review. Forensic Toxicol 29, 1–24 (2011). https://doi.org/10.1007/s11419-010-0107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-010-0107-9

Keywords

Navigation