Skip to main content
Log in

Ground States of K-component Coupled Nonlinear Schrödinger Equations with Inverse-square Potential

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

In this paper, the authors study ground states for a class of K-component coupled nonlinear Schrödinger equations with a sign-changing potential which is periodic or asymptotically periodic. The resulting problem engages three major difficulties: One is that the associated functional is strongly indefinite, the second is that, due to the asymptotically periodic assumption, the associated functional loses the ℤN-translation invariance, many effective methods for periodic problems cannot be applied to asymptotically periodic ones. The third difficulty is singular potential \({{{\mu _i}} \over {{{\left| x \right|}^2}}}\), which does not belong to the Kato’s class. These enable them to develop a direct approach and new tricks to overcome the difficulties caused by singularity and the dropping of periodicity of potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Cao, D. M. and Han, P. G., Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Differential Equations, 205, 2004, 521–537.

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, D. M. and Peng, S. J., A global compactness result for singular elliptic problems involving critical Sobolev exponent, Proc. Amer. Math. Soc., 131, 2003, 1857–1866.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, D. M. and Peng, S. J., A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations, 193, 2003, 424–434.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, P., Tang, X. H. and Zhang, L. M., Non-nehari manifold method for hamiltonian elliptic system with hardy potential: Existence and asymptotic properties of ground state solution, J. Geom. Anal., 32(2), 2022, 46.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Z. J. and Zou, W. M, On an elliptic problem with critical exponent and Hardy potential, J. Differential Equations, 252, 2012, 969–987.

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, Y. B., Jin, L. and Peng, S. J., Solutions of Schrödinger equations with inverse square potential and critical nonlinearity, J. Differential Equations, 253, 2012, 1376–1398.

    Article  MathSciNet  MATH  Google Scholar 

  7. Felli, V., On the existence of ground state solutions to nonlinear Schrödinger equations with multisingular inverse-square anisotropic potentials, J. Anal. Math., 108, 2009, 189–217.

    Article  MathSciNet  MATH  Google Scholar 

  8. Felli, V., Marchini, E. and Terracini, S., On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250, 2007, 265–316.

    Article  MathSciNet  MATH  Google Scholar 

  9. Felli, V. and Terracini, S., Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Differential Equations, 31, 2006, 469–495.

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, Q. Q. and Mederski, J., Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials, J. Differential Equations, 260, 2016, 4180–4202.

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, Y. J., Li, S. and Wei, J. C., Ground states of two-component attractive Bose-Einstein condensates I: Existence and uniqueness, J. Funct. Anal., 276(1), 2019, 183–230.

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, Y. J., Li, S., Wei, J. C. and Zeng, X. Y., Ground States of two-component attractive Bose-Einstein condensates II: Semi-trivial limit behavior, T. Am. Math. Soc., 371(10), 2019, 6903–6948.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, G. B. and Szulkin, A., An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4, 2002, 763–776.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, T. C. and Wei, J. C., Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differential Equations, 229(2), 2006, 538–569.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, T. and Wei, J. C., Ground state of N coupled nonlinear Schrödinger equations in ℝn, n ≤ 3, Commu. Math. Phys., 277(2), 2008, 573–576.

    Article  MATH  Google Scholar 

  16. Lin, X. Y., He, Y. B. and Tang, X. H., Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential, Commun. Pure. Appl. Anal., 18(3), 2019, 1547–1565.

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu S. B., On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45, 2012, 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  18. Maia, L. A., Montefusco, E. and Pellacci, B., Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations, 229(2), 2006, 743–767.

    Article  MathSciNet  MATH  Google Scholar 

  19. Malomed, B., Multi-component Bose-Einstein condensates: Theory, In: Emergent Nonlinear Phenomena in Bose-Einstein Condensation, P. G. Kevrekidis et al. (eds.), Atomic, Optical, and Plasma Physics, 45, Springer-Verlag, Berlin, 2008, 287–305.

    Google Scholar 

  20. Mederski, J., Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Comm. Partial Differential Equations, 41(9), 2016, 1426–1440.

    Article  MathSciNet  MATH  Google Scholar 

  21. Montefusco, E., Pellacc, B. and Squassina, M., Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10(1), 2008, 47–71.

    Article  MathSciNet  MATH  Google Scholar 

  22. Pankov, A., Periodic nonlinear schrödinger equation with application to photonic crystals, Milan J. Math., 73, 2005, 259–287.

    Article  MathSciNet  MATH  Google Scholar 

  23. Pankov, A., On decay of solutions to nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 136, 2008, 2565–2570.

    Article  MathSciNet  MATH  Google Scholar 

  24. Peng, S. J. and Wang, Z. Q., Segregated and synchronized vector solutions for nonlinear Schrödinger systems, Arch. Ration. Mech. Anal., 208(1), 2013, 305–339.

    Article  MathSciNet  MATH  Google Scholar 

  25. Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Analysis of Operators, Vol. IV, Academic Press, New York, 1978.

    MATH  Google Scholar 

  26. Ruegg, Ch. et al., Bose-Einstein condensation of the triplet states in the magnetic insulator TICuCI3, Nature, 423, 2003, 62–65.

    Article  Google Scholar 

  27. Ruiz, D. and Willem, M., Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations, 190, 2003, 524–538.

    Article  MathSciNet  MATH  Google Scholar 

  28. Simon, B., Schrödinger semigroups, Bull. Amer. Math. Soc., 7(3), 1982, 447–526.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sirakov, B., Least-energy solitary waves for a system of nonlinear Schrödinger equations in ℝn, Comm. Math. Phys., 271, 2007, 199–221.

    Article  MathSciNet  MATH  Google Scholar 

  30. Smets, D., Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. Amer. Math. Soc., 357, 2005, 2909–2938.

    Article  MathSciNet  MATH  Google Scholar 

  31. Szulkin, A. and Weth, T., Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257(12), 2009, 3802–3822.

    Article  MathSciNet  MATH  Google Scholar 

  32. Tang, X. H., Non-Nehari manifold method for superlinear Schrödinger equation, Taiwanese J. Math., 18, 2014, 1957–1979.

    Article  MathSciNet  MATH  Google Scholar 

  33. Tang, X. H. and Chen, S. T., Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 55, 2017, 110.

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang, X. H, Chen, S. T., Lin, X. Y. and Yu, J. S., Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions, J. Differential Equations, 268, 2020, 4663–4690.

    Article  MathSciNet  MATH  Google Scholar 

  35. Wei, J. C. and Wu, Y. Z., Ground states of nonlinear Schrödinger systems with mixed couplings, J. Math. Pure. Appl., 141, 2020, 50–88.

    Article  MATH  Google Scholar 

  36. Wu, Y. Z., Ground states of a K-component critical system with linear and nonlinear couplings: The attractive case, Adv. Nonlinear Stud., 19(3), 2019, 595–623.

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, M. B., Chen, W. X. and Ding, Y. H., Solutions of a class of Hamiltonian elliptic systems in ℝN, J. Math. Anal. Appl., 362, 2010, 338–349.

    Article  MathSciNet  Google Scholar 

  38. Zhang, J., Tang, X. H. and Zhang, W., Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms, Nonlinear Anal., 95, 2014, 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, J., Zhang, W. and Xie, X. L., Existence and concentration of semiclassical solutions for Hamiltonian elliptic system, Comm. Pure Appl. Anal., 15, 2016, 599–622.

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, F. K. and Ding, Y. H., On Hamiltonian elliptic systems with periodic or non-periodic potentials, J. Differential Equations, 249, 2010, 2964–2985.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the anonymous reviewers for thelp and thoughtful suggestions that have helped to improve this paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen, Huimao Chen or Xianhua Tang.

Additional information

This work was supported by the Natural Science Foundation of Hubei Province of China (No. 2021CFB473) and Hubei Educational Committee (No. D20161206).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Chen, H. & Tang, X. Ground States of K-component Coupled Nonlinear Schrödinger Equations with Inverse-square Potential. Chin. Ann. Math. Ser. B 43, 319–342 (2022). https://doi.org/10.1007/s11401-022-0325-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-022-0325-6

Keywords

2000 MR Subject Classification

Navigation