Skip to main content
Log in

Non-Nehari Manifold Method for Hamiltonian Elliptic System with Hardy Potential: Existence and Asymptotic Properties of Ground State Solution

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper is dedicated to studying ground state solution for a class of Hamiltonian elliptic system with gradient term and inverse square potential. The resulting problem engages four major difficulties: one is that the associated functional is strongly indefinite, the second is that, due to the asymptotically periodic assumption, the associated functional loses the \(\mathbb {Z}^N\)-translation invariance. The third difficulty we must overcome lies in verifying the link geometry and showing the boundedness of Cerami sequences when the non-linearity is asymptotically quadratic. The last is singular potential \(\frac{\mu }{|x|^2}\), which does not belong to the Kato’s class. These enable us to develop a direct approach and new tricks to overcome the difficulties caused by singularity and the dropping of periodicity of potential. We establish the existence and non-existence results of ground state solutions under some mild conditions, and derive asymptotical behavior of ground state solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhakta, M., Chakraborty, S., Pucci, P.: Fractional Hardy-Sobolev equations with nonhomogeneous terms. Adv. Nonlinear Anal. 1(10), 1086–1116 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, D., Han, P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 205, 521–537 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, D., Peng, S.: A note on the sign-changing solutions to elliptic problem with critical Sobolev and Hardy terms. J. Differ. Equ. 193, 424–434 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, D., Peng, S.: A global compactness result for singular elliptic problems involving critical Sobolev exponent. Proc. Am. Math. Soc. 131, 1857–1866 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, S.M., Lin, C.S., Lin, T.C., Lin, W.W.: Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates. Physica D 196, 341–361 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z., Zou, W.: On an elliptic problem with critical exponent and Hardy potential. J. Differ. Equ. 252, 969–987 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, Y., Luan, S., Willem, M.: Solutions of a system of diffusion equations. J. Fix. Point. Theory A 2, 117–139 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, Y., Jin, L., Peng, S.: Solutions of Schrödinger equations with inverse square potential and critical nonlinearity. J. Differ. Equ. 253, 1376–1398 (2012)

    Article  MATH  Google Scholar 

  9. Felli, V.: On the existence of ground state solutions to nonlinear Schrödinger equations with multisingular inverse-square anisotropic potentials. J. Anal. Math. 108, 189–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Felli, V., Terracini, S.: Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Commun. Partial Differ. Equ. 31, 469–495 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Felli, V., Marchini, E., Terracini, S.: On Schrödinger operators with multipolar inverse-square potentials. J. Funct. Anal. 250, 265–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fiscella, A., Pucci, P., Saldi, S.: Existence of entire solutions for Schrödinger-Hardy systems involving two fractional operators. Nonlinear Anal. 158, 109–131 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiscella, A., Pucci, P., Zhang, B.: \(p\)-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities. Adv. Nonlinear Anal. 1(8), 1111–1131 (2019)

    MATH  Google Scholar 

  14. Guo, Q., Mederski, J.: Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials. J. Differ. Equ. 260, 4180–4202 (2016)

    Article  MATH  Google Scholar 

  15. Guo, Y., Li, S., Wei, J., Zeng, X.: Ground states of two-component attractive Bose-Einstein condensates II: semi-trivial limit behavior. Trans. Am. Math. Soc. 371(10), 6903–6948 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, Y., Li, S., Wei, J.: Ground states of two-component attractive Bose-Einstein condensates I: existence and uniqueness. J. Funct. Anal. 261(1), 183–230 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Itô, S.: Diffusion Equations. Transl. Math. Monogr., vol. 114. American Mathematical Society, Providence, RI (1992)

    MATH  Google Scholar 

  18. Li, G.B., Szulkin, A.: An asymptotically periodic Schrödinger equation with indefinite linear part. Commun. Contemp. Math. 4, 763–776 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, T.C., Wei, J.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229(2), 538–569 (2006)

    Article  MATH  Google Scholar 

  20. Lin, T., Wei, J.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \({\mathbb{R}^{n}}, n \le 3\). Commun. Math. Phys. 277(2), 573–576 (2008)

    Article  MATH  Google Scholar 

  21. Lin, X., He, Y., Tang, X.: Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Commun. Pure Appl. Anal. 18(3), 1547–1565 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)

    Book  MATH  Google Scholar 

  23. Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)

    Article  MATH  Google Scholar 

  24. Malomed, B.: Multi-component Bose-Einstein condensates: theory. In: Kevrekidis, P.G., et al. (eds.) Emergent Nonlinear Phenomena in Bose-Einstein Condensation, Atomic, Optical, and Plasma Physics, vol. 45, pp. 287–305. Springer, Berlin (2008)

    Google Scholar 

  25. Pankov, A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pankov, A.: On decay of solutions to nonlinear Schrödinger equations. Proc. Am. Math. Soc. 136, 2565–2570 (2008)

    Article  MATH  Google Scholar 

  27. Peng, S., Wang, Z.: Segregated and synchronized vector solutions for nonlinear Schrödinger systems. Arch. Ration. Mech. Anal. 208(1), 305–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pucci, P., Letizia, T.: Existence for fractional \((p, q)\) systems with critical and Hardy terms in \({\mathbb{R}^{N}}\). Nonlinear Anal. 211, 112477 (2021)

    Article  MATH  Google Scholar 

  29. Ruiz, D., Willem, M.: Elliptic problems with critical exponents and Hardy potentials. J. Differ. Equ. 190, 524–538 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Smets, D.: Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities. Trans. Am. Math. Soc. 357, 2909–2938 (2005)

    Article  MATH  Google Scholar 

  31. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257(12), 3802–3822 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sirakov, B.: Least-energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}^{n}}\). Commun. Math. Phys. 271, 199–221 (2007)

    Article  MATH  Google Scholar 

  33. Tang, X., Chen, S., Lin, X., Yu, J.: Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions. J. Differ. Equ. 268, 4663–4690 (2020)

    Article  MATH  Google Scholar 

  34. Tang, X.: Non-Nehari manifold method for superlinear Schrödinger equation. Taiwanese J. Math. 18, 1957–1979 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tang, X., Chen, S.: Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. 55, 110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tang, X.: Non-Nehari manifold method for asymptotically periodic Schrödinger equation. Sci. China Math. 58, 715–728 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wei, J., Wu, Y.: Ground states of nonlinear Schrödinger systems with mixed couplings. J. Math. Pure Appl. 141, 50–88 (2020)

    Article  MATH  Google Scholar 

  38. Wu, Y.: Ground states of a \(K\)-component critical system with linear and nonlinear couplings: the attractive case. Adv. Nonlinear Stud. 19(3), 595–623 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, M.B., Chen, W.X., Ding, Y.H.: Solutions of a class of Hamiltonian elliptic systems in \({\mathbb{R}^{N}}\). J. Math. Anal. Appl. 352, 338–349 (2010)

    Article  Google Scholar 

  40. Zhang, J., Zhang, W., Tang, X.H.: Ground state solutions for Hamiltonian elliptic system with inverse square potential. Disc. Contin. Dyn. Syst. 37, 4565–4583 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, J., Tang, X.H., Zhang, W.: Ground state solutions for superquadratic Hamiltonian elliptic systems with gradient terms. Nonlinear Anal. 95, 1–10 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, J., Zhang, W., Xie, X.: Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Commun. Pure Appl. Anal. 15, 599–622 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao, F.K., Ding, Y.H.: On Hamiltonian elliptic systems with periodic or non-periodic potentials. J. Differ. Equ. 249, 2964–2985 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research by the authors were supported by the State Scholarship Fund organized by the China Scholarship Council (CSC). This paper was completed when the first author was visiting the Department of Mathematics, University of British Columbia. They would also like to thank Professor Juncheng Wei for his hospitality and helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by Natural Science Foundation of Hubei Province of China (No. 2021CFB473) and Hubei Educational Committee (No. D20161206)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Tang, X. & Zhang, L. Non-Nehari Manifold Method for Hamiltonian Elliptic System with Hardy Potential: Existence and Asymptotic Properties of Ground State Solution. J Geom Anal 32, 46 (2022). https://doi.org/10.1007/s12220-021-00739-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00739-5

Keywords

Mathematics Subject Classification

Navigation