Skip to main content
Log in

Mercury distribution and speciation in historically contaminated soils of the Isonzo River Plain (NE Italy)

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Mercury (Hg) mining has negatively impacted the environmental quality of the entire Isonzo/Soča River basin (NE Italy and NW Slovenia), which suffers from a high degree of contamination. This study aims to expand the knowledge on Hg distribution in soils, assess the degree of contamination and apply statistical methods for management purposes. The Hg speciation in soils and the determination of gaseous elemental mercury (GEM) could be useful for an environmental risk assessment of the area.

Materials and methods

Surface and subsurface soil samples (n = 262) were collected for total Hg and selective sequential speciation (n = 36) following the ISO (2005) guidance for the determination of the pedo-geochemical background and background values for inorganic and organic substances in soils. Total Hg was measured according to the US-EPA 7473, and speciation was conducted following the five-step method proposed by Bloom et al. (Anal Chim Acta 479:233–248, 2003). GEM was measured during field-work operations. Statistical analysis was performed in order to have a preliminary evaluation of the whole dataset and distinguish the pedo-geochemical areas and differences between surface and subsurface Hg background levels for management purposes using EXCEL™ and PAST statistical programs.

Results and discussion

Total Hg concentrations ranged from the natural background (< 0.06 mg kg−1) to 41.0 mg kg−1, and contamination was widespread (60% of the samples were classified as “highly to extremely contaminated”) along the whole river basin at variable distances from the river banks. Hg speciation indicated that mostly insoluble mineral bound species (such as cinnabar and meta-cinnabar) prevail, whereas the presence of bioaccessible forms was negligible. In the atmosphere, GEM concentrations were mostly lower than 3.0 ng m−3, which is close to the background value reported for the Mediterranean area, and consequently, local inhabitants are not at risk through inhalation pathways.

Conclusions

The results showed that soils of the Isonzo/Soča River basin are contaminated and that the contamination is not restricted to the river banks. Mercury is mostly present in a tightly bound mineral fraction, i.e. cinnabar (mostly insoluble), whilst the presence of bioaccessible forms (e.g. stomach-acid soluble) and GEM were almost negligible. The limits set by Italian law for total Hg in soils are often exceeded, thus creating the necessity to apply a risk assessment evaluation. In this case, the results of Hg speciation could replace the total Hg value in the generally accepted exposure pathway (i.e. ingestion, inhalation and dermal absorption).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acquavita A, Covelli S, Emili A, Berto D, Faganeli J, Giani M, Horvat M, Koron N, Rampazzo F (2012) Mercury in the sediments of the Marano and Grado Lagoon (Northern Adriatic Sea): sources, distribution and speciation. Estuar Coast Shelf Sci 13: 20–31. 

  • ASTM D2974 (2020) Standard test methods for moisture, ash, and organic matter of peat and other organic soils. https://www.astm.org/Standards/D2974

  • Bagnato E, Sproveri M, Barra M, Bitetto M, Bonsignore M, Calabrese S, Di Stefano V, Oliveri E, Parello F, Mazzola S (2013) The sea-air exchange of mercury (Hg) in the marine boundary layer of the Augusta Basin (Southern Italy): concentrations and evasion flux. Chemosphere 93:2024–2032

    Article  CAS  Google Scholar 

  • Barago N, Floreani F, Acquavita A, Esbrí JM, Covelli S, Higueras P (2020) Spatial and temporal trends of gaseous elemental mercury over a highly impacted coastal environment (Northern Adriatic, Italy). Atmosphere, 11, 935. https://doi.org/10.3390/atmos11090935

  • Bavec Š, Biester H, Gosar M (2018) A risk assessment of human exposure to mercury-contaminated soil and household dust in the town of Idrija (Slovenia). J Geochem Explor 187:131–140

    Article  CAS  Google Scholar 

  • Bierkens J, Van Holderbeke M, Cornelis C, Torfs R (2011) Exposure through soil and dust ingestion. In: Swartjes FA (Ed.), Dealing with contaminated sites: from theory towards practical application. Springer, pp. 261–286

  • Biester M, Gosar M, Müller G (1999) Mercury speciation in tailings of the Idrija mercury mine. J Geochem Explor 65:195–204

    Article  CAS  Google Scholar 

  • Biester H, Gosar M, Covelli S (2000) Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine, Slovenia. Environ Sci Technol 34:3330–3336

    Article  CAS  Google Scholar 

  • Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248

    Article  CAS  Google Scholar 

  • Boszke L, Kowalski A, Astel A, Barański A, Gworek B, Siepak J (2008) Mercury mobility and bioavailability in soil from contaminated area. Environ Geol 55:1075–1087

    Article  CAS  Google Scholar 

  • EJ Calabrese EJ Stanek CE Gilbert 1991 Evidence of soil-pica behaviour and quantification of soil ingested Hum Exp Toxicol 10. https://doi.org/10.1177/096032719101000403

  • Carpi A, Lindberg SE (1998) Application of a Teflon (TM) dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil. Atmos Environ 32:873–872

    Article  CAS  Google Scholar 

  • Cerovac A, Covelli S, Emila A, Pavoni E, Petranich E, Gregorič A, Urbanc J, Zavagno E, Zini L (2018) Mercury in the unconfined aquifer of the Isonzo/Soča River alluvial plain downstream from the Idrija mining area. Chemosphere 195:749–761

    Article  Google Scholar 

  • Clarkson TW (1998) Human toxicology of mercury. J Trace Elem Med 11:303–317

    Article  CAS  Google Scholar 

  • Colica A, Benvenuti M, Chiarantini L, Costagliola P, Lattanzi P, Rimondi V, Rinaldi M (2019) From point source to diffuse source of contaminants: the example of mercury dispersion in the Paglia River (Central Italy). CATENA 172:488–500

    Article  CAS  Google Scholar 

  • Comici C, Bussani A (2007) Analysis of the River Isonzo discharge (1998–2005). Boll Geofis Teor Appl 48:435–454

    Google Scholar 

  • Costantini EA, Urbano F, L’Abate G (2020) Soils regions of Italy. http://www.soilmaps.it/

  • Covelli S, Faganeli J, Horvat M, Brambati A (2001) Mercury contamination of coastal sediments as the results of long-term cinnabar activity (Gulf of Trieste, northern Adriatic Sea). Appl Geochem 16:541–558

    Article  CAS  Google Scholar 

  • Covelli S, Piani R, Acquavita A, Predonzani S, Faganeli J (2007) Transport and dispersion of particulate Hg associated with a river plume in coastal Northern Adriatic environments. Mar Poll Bull 55:436–450

    Article  CAS  Google Scholar 

  • Covelli S, Acquavita A, Piani R, Predonzani S, De Vittor C (2009) Recent and past contamination of mercury in an estuarine environment (Marano lagoon, Northern Adriatic, Italy). Estuar Coast Shelf Sci 82:273–284

    Article  CAS  Google Scholar 

  • Covelli S, Emili A, Acquavita A, Koron N, Faganeli J (2011) Benthic biogeochemical cycling of mercury in two contaminated northern Adriatic coastal lagoons. Cont Shelf Res 31:1777–1789

    Article  Google Scholar 

  • Covelli S, Langone L, Acquavita A, Piani R, Emili A (2012a) Historical flux of mercury associated with mining and industrial sources in the Marano and Grado Lagoon (northern Adriatic Sea). Estuar Coast Shelf Sci 13:7–19

    Article  Google Scholar 

  • Covelli S, Protopsalti I, Acquavita A, Sperle M, Bonardi M, Emili A (2012b) Spatial variation, speciation and sedimentary records of mercury in the Guanabara Bay (Rio de Janeiro, Brazil). Cont Shelf Res 39:29–42

    Article  Google Scholar 

  • Dizdarevič T (2001) The influence of mercury production in Idrija mine on the environment in the Idrija region and over a broad area. RMZ — Mat Geoenviron 48: 56–64

  • D. Lgs. 152/06 (2006) 14 April 2006. Decreto Legislativo n. 152 “Norme in materia ambientale.”. 88 Gazzetta Ufficiale Repubblica Italiana

  • EN ISO (2008) ISO 25177:2008. Soil quality—field soil description. https://www.iso.org/standard/42783.html

  • EN ISO (2018) Soil quality — guidance on the determination of background values. http://store.uni.com/catalogo/index.php/en-iso-19258-2018.html

  • EPA (2000) Guidance for data quality assessment — Practical method for data analysis. EPA QA/G-9

  • EPA (2007) Mercury in soils and solutions by thermal decomposition, amalgamation and atomic absorption spectrometry

  • Esbrí JM, Bernaus A, Ávila M, Kocman D, García-Noguero EM, Guerrero B, Gaona X, Álvarez R, Perez-Gonzalez G, Valiente M, Higueras P, Horvat M, Loredo J (2010) XANES speciation of mercury in three mining districts — Almadén, Asturias (Spain), Idria (Slovenia). J Synchr Rad 17:179–186

    Article  Google Scholar 

  • Fantozzi L, Ferrara R, Dini F, Tamburello L, Pirrone N, Sprovieri F (2013) Study of the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata Region of Italy Environ Res 125:69–74

    CAS  Google Scholar 

  • Fernández-Martínez R, Rucandio I (2014) Total mercury, organic mercury and mercury fractionation in soil profiles from the Almaden mercury mine area. Environ Sci: Processes Impacts 16:333–340

    Google Scholar 

  • Floreani F, Barago N, Acquavita A, Covelli S, Skert N, Higueras P (2020) Spatial distribution and biomonitoring of atmospheric mercury concentrations over a contaminated coastal lagoon (Northern Adriatic, Italy). Atmosphere 11:1280

    Article  CAS  Google Scholar 

  • Floreani F, Acquavita A, Petranich E, Covelli S (2019) Diurnal fluxes of gaseous elemental mercury from the water-air interface in coastal environments of the northern Adriatic Sea. Sci Total Environ 668:925–935

    Article  CAS  Google Scholar 

  • Fritsche J, Obrist D, Alewell C (2008) Evidence of microbial control of Hg0 emission from uncontaminated terrestrial soils. J Plant Nut Soil Sci 171:200–209

    Article  CAS  Google Scholar 

  • Frohne T, Rinklebe J (2013) Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air Soil Poll 22:1591–1607

    Article  Google Scholar 

  • Gabriel MC, Williamson DG (2004) Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ Geochem Health 26:421–434

    Article  CAS  Google Scholar 

  • Gibičar D, Horvat M, Logar M, Fajon V, Falnoga I, Ferrara R, Lanzillotta E, Ceccarini C, Mazzolai B, Denby B, Pacyna J (2009) Human exposure to mercury in the vicinity of chlor-alkali plant. Environ Res 109:355–367

    Article  Google Scholar 

  • Gordeeva ON, Belogolova GA, Pastukhov MV (2017) Mercury speciation and mobility in soils of industrial areas in the Baikal region, Southern Siberia, Russia. Environ Earth Sci 76:558–568

    Article  Google Scholar 

  • Gosar M, Pirc S, Bidovec M (1997) Mercury in the Idrijca River sediments as a reflection of mining and smelting activities of the Idrija mercury mine. J Geochem Explor 58:125–131

    Article  CAS  Google Scholar 

  • Gosar M (2008) Mercury in river sediments, floodplains and plants growing thereon in drainage area of Idrija mine, Slovenia. Pol J Environ Stud 17:227–236

    CAS  Google Scholar 

  • Gosar M, Teršič T (2012) Environmental geochemistry studies in the area of Idrija mercury mine, Slovenia. Environ Geochem Health 34:27–41

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1): 9pp. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Hernández A, Jebrak M, Higueras P, Oyarzun R, Morata D, Munha J (1999) The Almáden mercury mining district, Spain. Miner Deposition 34:539–548

    Article  Google Scholar 

  • ISO (2005) Soil quality — guidance on the determination of background values. https://www.iso.org/standard/33772.html

  • ISO/IEC (1997) Proficiency testing by interlaboratory comparisons part 1: development and operation of laboratory proficiency testing. https://www.iso.org/standard/27216.html

  • Hong Y, Chen J, Deng J, Tong L, Xu L, Niu Z, Yin L, Chen Y, Hong Z (2016) Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta. China Environ Poll 218:259–268

    Article  CAS  Google Scholar 

  • Kim KH, Lindberg SE, Meyers TP (1995) Micrometeorological measurements of mercury-vapor fluxes over background forest soils in eastern Tennessee. Atmos Environ 29:267–282

    Article  CAS  Google Scholar 

  • Kim CS, Brown GE Jr, Rytuba JJ (2000) Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy. Sci Total Environ 261:157–168

    Article  CAS  Google Scholar 

  • Kim CS, Bloom NS, Rytuba JJ, Brown JE Jr (2003) Mercury speciation by X-ray absorption fine structure spectroscopy and sequential chemical extractions: a comparison of speciation methods. Environ Sci Technol 37:5102–5108

    Article  CAS  Google Scholar 

  • Kim CS, Rytuba JJ, Brown GE Jr (2004) Geological and anthropogenic factors influencing mercury speciation in mine wastes: an EXAFS spectroscopy study. Appl Geochem 19:379–393

    Article  CAS  Google Scholar 

  • Kocman D, Horvat M, Kotnik J (2004) Mercury fractionation in contaminated soils from the Idrija mercury mine region. J Environ Monit 6:696–703

    Article  CAS  Google Scholar 

  • Kocman D, Vreča P, Fajon V, Horvat M (2011) Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia. Environ Res 111:1–9

    Article  CAS  Google Scholar 

  • Kotnik J, Horvat M, Dizdarevič T (2005) Current and past mercury distribution in air over the Idrija mercury mine region, Slovenia. Atmos Environ 39:7570–7579

    Article  CAS  Google Scholar 

  • Kowalska JB, Mazurek R, Gaşiorek M, Zaleski T (2018) Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—a review. Environ Geochem Health 40:2395–2420

    Article  CAS  Google Scholar 

  • Lilliefors HW (1969) On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J Am Stat Assoc 64:387–389

    Article  Google Scholar 

  • Lin CJ, Pehkonen SO (1999) The chemistry of atmospheric mercury: a review. Atmos Environ 33:2067–2079

    Article  CAS  Google Scholar 

  • Liu GL, Cabrera J, Allen M, Cai Y (2006) Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Sci Total Environ 369:384–392

    Article  CAS  Google Scholar 

  • Marusczak N, Castelle S, de Vogüé B, Knoery J, Cossa D (2016) Seasonal variations of total gaseous mercury at a French coastal Mediterranean site. Aerosol Air Qual Res 16:46–60

    Article  CAS  Google Scholar 

  • Mason RP, Sheu GR (2002) Role of the ocean in the global mercury cycle. Global Biogeochem Cy 16(40–1):40–14

    Google Scholar 

  • Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2:108–118

    Google Scholar 

  • Navarro A, Biester H, Mendoza JL, Cardellach E (2006) Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environ Geol 49:1089–1101

    Article  CAS  Google Scholar 

  • Oyarzun R, Higueras P, Esbrí JM, Pizarro J (2007) Mercury in air and plant specimens in herbaria: a pilot study at the MAF Herbarium in Madrid (Spain). Sci Total Environ 387:346–352

    Article  CAS  Google Scholar 

  • Pestana MHD, Formoso MLL, Lechler PJ (2000) Mercury and copper contamination from historic and recent mining activities in the Camaqua River Basin, South Brazil. In: J. O. Nriagu (ed.), 11th Annual international conference on heavy metals in the environment. University of Michigan, School of Public Health, Ann Arbor

  • Phipps O, Barett J, Hesketh P, Brown R (2015) Risk-based management of mercury impacted sites. Nicole, network for industrially contaminated land in Europe

  • Piani A, Acquavita A, Catalano L, Contin M, Mattassi G, De Nobili M (2013) Effects of long-term Hg contamination on soil mercury speciation and soil biological activities. E3S Web of Conferences 1, 08001. https://doi.org/10.1051/e3sconf/20130108001

  • Quintanilla-Villanueva GE, Villanueva-Rodríguez M, Guzmán-Mar JL, Torres-Gaytan E, Hernández-Ramírez A, Orozco-Rivera G, Hinojosa-Reyes L (2020) Mobility and speciation of mercury in soils from a mining zone in Villa Hidalgo, SLP, Mexico: a preliminary risk assessment. App Geochem 122, 104746

  • Reis AT, Davidson CM, Vale C, Pereira E (2016) Overview and challenges of mercury fractionation and speciation in soils. Trac Trends Anal Chem 82:109–117

    Article  CAS  Google Scholar 

  • Rimondi V, Gray JE, Costagliola P, Vaselli O, Lattanzi P (2012) Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Sci Total Environ 414:318–327

    Article  CAS  Google Scholar 

  • Rimondi V, Bardelli F, Benvenuti M, Costagliola P, Gray JE, Lattanzi P (2014) Mercury speciation in the Mt. Amiata mining district (Italy): interplay between urban activities and mercury contamination. Chem Geol 380:110–118

    Article  CAS  Google Scholar 

  • Rytuba JJ (2003) Mercury from mineral deposits and potential environmental impact. Environ Geol 43:326–338

    Article  CAS  Google Scholar 

  • Seigneur C, Wrobel J, Constantinou E (1994) A chemical kinetic mechanism for atmospheric inorganic mercury. Environ Sci Technol 28:1589–1597

    Article  CAS  Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63

    Article  Google Scholar 

  • Sholupov SE, Ganeyev AA (1995) Zeeman absorption spectrometry using high frequency modulated light polarization. Spectrochim Acta Part B 50:1227–1238

    Article  Google Scholar 

  • Sholupov S, Pogarev S, Ryzhov V, Mashyanov N, Stroganov A (2004) Zeeman atomic absorption spectrometer RA-915 + for direct determination of mercury in air and complex matrix samples. Fuel Process Technol 105:473–485

    Article  Google Scholar 

  • Skyllberg U, Qian J, Frech W, Xia K, Bleam WF (2003) Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochem 64:53–76

    Article  CAS  Google Scholar 

  • Sprovieri F, Pirrone N, Ebighaus R, Kock H, Dommergue A (2010) A review of worldwide atmospheric mercury measurements. Atmos Chem Phys 10:8245–8265

    Article  CAS  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Cri Rev Environ Sci Technol 31:241–293

    Article  CAS  Google Scholar 

  • Vaselli O, Higueras P, Nisi B, María Esbrí J, Cabassi J, Martínez-Coronado A, Tassi F, Rappuoli D (2013) Distribution of gaseous Hg in the mercury mining district of Mt. Amiata (Central Italy): a geochemical survey prior the reclamation project. Environ Res 125:179–187

    Article  CAS  Google Scholar 

  • Viso Y (2004) Processi di accumulo e trasporto del mercurio nel Golfo di Trieste. Tesi di Laurea in Sedimentologia, Corso di Laurea in Scienze Geologiche. Università di Trieste

  • Wängberg I, Munthe J, Amouroux D, Andersson ME, Fajon V, Ferrara R, Gårdfeldt K, Horvat M, Mamane Y, Melamed E, Monperrus M, Ogrinc N, Yossef O, Pirrone N, Sommar J, Sprovieri F (2008) Atmospheric mercury at Mediterranean coastal stations. Environ Fluid Mech 8:101–116

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  CAS  Google Scholar 

  • Zhong H, Wang WX (2008) Effects of sediment composition on inorganic mercury partitioning, speciation and bioavailability in oxic surficial sediments. Environ Poll 151:222–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported and programmed together by the Autonomous Region of Friuli Venezia Giulia. The authors thank Laura Catalano and Baldovino Toffolutti for preliminary project and planning of the activities and the ERSA (Agenzia Regionale per lo Sviluppo Rurale del Friuli Venezia Giulia) for grain size analysis. We warmly thank Karry Close for her careful proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Acquavita.

Additional information

Responsible editor: Yongtao Li

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acquavita, A., Brandolin, D., Cattaruzza, C. et al. Mercury distribution and speciation in historically contaminated soils of the Isonzo River Plain (NE Italy). J Soils Sediments 22, 79–92 (2022). https://doi.org/10.1007/s11368-021-03038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-021-03038-2

Keywords

Navigation