Skip to main content

Advertisement

Log in

Principal Biogeochemical Factors Affecting the Speciation And Transport of Mercury through the terrestrial environment

  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

It is increasingly becoming known that mercury transport and speciation in the terrestrial environment play major roles in methyl-mercury bioaccumulation potential in surface water. This review discusses the principal biogeochemical reactions affecting the transport and speciation of mercury in the terrestrial watershed. The issues presented are mercury-ligand formation, mercury adsorption/desorption, and elemental mercury reduction and volatilization. In terrestrial environments, OH, Cl and S ions have the largest influence on ligand formation. Under oxidized surface soil conditions Hg(OH)2, HgCl2, HgOH+, HgS, and Hg0 are the predominant inorganic mercury forms. In reduced environments, common mercury forms are HgSH+, HgOHSH, and HgClSH. Many of these mercury forms are further bound to organic and inorganic ligands. Mercury adsorption to mineral and organic surfaces is mainly dictated by two factors: pH and dissolved ions. An increase in Cl concentration and a decrease in pH can, together or separately, decrease mercury adsorption. Clay and organic soils have the highest capability of adsorbing mercury. Important parameters that increase abiotic inorganic mercury reduction are availability of electron donors, low redox potential, and sunlight intensity. Primary factors that increase volatilization are soil permeability and temperature. A decrease in mercury adsorption and an increase in soil moisture will also increase volatilization. The effect of climate on biogeochemical reactions in the terrestrial watershed indicates mercury speciation and transport to receiving water will vary on a regional basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DOC:

dissolved organic carbon

DOM:

dissolved organic matter

EDTA:

ethylene diaminetetraacetic acid

PHREEQC:

speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

POC:

particulate organic carbon

References

  • JJ Alberts JE Sindler RW Miller DE Nutter (1974) ArticleTitleElemental mercury evolution mediated by humic acid Science 184 895–897 Occurrence Handle10.1126/science.184.4139.895

    Article  Google Scholar 

  • B Allard I. Arsenie (1991) ArticleTitleAbiotic reduction of mercury by humic substances in aquatic systems-an important process for the mercury cycle Water Air Soil Pollut 56 457–464 Occurrence Handle10.1007/BF00342291

    Article  Google Scholar 

  • A Amirbahman AL Reid TA Haines JS Kahl C. Arnold (2002) ArticleTitleAssociation of methyl-mercury with dissolved humic acids Environ Sci Technol 36 690–695 Occurrence Handle10.1021/es011044q

    Article  Google Scholar 

  • M Amyot G Mierie DRS Lean DJ. McQeen (1994) ArticleTitleSunlight induced formation of dissolved gaseous mercury in lake waters Science 28 2366–2371

    Google Scholar 

  • MA Anderson AJ Rubin (1981) Adsorption of Inorganics at Solid-Liquid Interfaces Ann Arbor Science Publishers Ann Arbor MI 79–85

    Google Scholar 

  • A Andersson (1970) ArticleTitleOn the geochemical behavior of mercury Grundforbattring 23 31–40

    Google Scholar 

  • A Andersson (1979) Mercury in soils JO Nriagu (Eds) The Biogeochemistry of Mercury in the Environment Elsevier/ North Holland Biomedical Press Amsterdam New York, Oxford 79–122

    Google Scholar 

  • S Aomine K. Inoue (1967) ArticleTitleRetention of mercury by soils. II. Adsorption of phenylmercuric acetate by soil colloids. J Plant Nutr Soil Sci (Tokyo) 13 195–200

    Google Scholar 

  • CL Babiarz JP Hurley JM Benoit AA Shafer DA. Webb (1998) ArticleTitleSeasonal influences on partitioning and transport of total and methyl-mercury in rivers from contrasting watersheds Biogeochemistry 41 237–257 Occurrence Handle10.1023/A:1005940630948

    Article  Google Scholar 

  • CL Babiarz JP Hurley SR Hoffman AW Andren MM Shaffer DE Armstrong (2001) ArticleTitlePartitioning of total mercury and methyl-mercury to the colloidal phause in freshwaters Environ Sci Technol 35 4773–4782 Occurrence Handle10.1021/es010895v

    Article  Google Scholar 

  • T Barkay M Gillman RR Turner (1997) ArticleTitleEffects of dissolved organic carbon and salinity on bioavailability of mercury Appl Environ Microbiol 63 4267–4271

    Google Scholar 

  • Baughman GL, Gordon JA, Wolfe NL, Zepp RG. 1973 Chemistry of Organo mercurials in aquatic systems. Ecological Research series. EPA-660/3-73-012, National Environ Research Center, Office of Research Center, Office of Research and Development, USEPA, Corvallis, Oregon.

  • P Benes B Havlik (1979) Speciation of mercury in natural waters JO Nriagu (Eds) The Biogeochemistry of Mercury in the Environment Elsevier, North-Holland Biomedical Press Amterdam 176–202

    Google Scholar 

  • H Biester C. Scholz (1997) ArticleTitleDetermination of mercury binding forms in contaminated soils: mercury pyrolysis versus sequential extractions Environ Sci Technol 31 233–239 Occurrence Handle10.1021/es960369h Occurrence Handle1:CAS:528:DyaK28XntVyisbk%3D

    Article  CAS  Google Scholar 

  • K Bishop Y Lee C Pettersson B Allard (1991) ArticleTitleTerrestrial sources of methyl-mercury in surface waters: the importance of the riparian zone on the Svartberget catchment Water Air Soil Pollut 80 435–444 Occurrence Handle10.1007/BF01189693

    Article  Google Scholar 

  • KH Bishop YH Lee (1997) Catchments as a source of mercury/methyl-mercury in boreal surface waters A Sigel H Sigel (Eds) Metal Ions in Biological Systems Marcel and Dekker, Inc. New York, Basel, Hong Kong 114–127

    Google Scholar 

  • Bright, DA. 1989 Electrode response to the As(V)/As(III) redox couple and the use of arsenic speciation as an indicator of redox conditions in natural watersystems. M.Sc. Thesis, University of Colorado.

  • A Carpi S. Lindberg (1997) ArticleTitleSunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge Environ Sci Technol 31 2085–2091 Occurrence Handle10.1021/es960910+

    Article  Google Scholar 

  • A Carpi S. Lindberg (1998) ArticleTitleApplication of a TeflonTMDynamic Flux Chamber for quantifying soil mercury flux: tests and results over background soils Atmos Environ 32 873–882 Occurrence Handle10.1016/S1352-2310(97)00133-7

    Article  Google Scholar 

  • J Chen F Tang F Wang (1995) ArticleTitleMobilization of mercury from estuarine suspended particulate matter: a case study in the Yalujiang Estuary, Northeast China Can J Water Qual Res 30 25–32

    Google Scholar 

  • SC Choi R Bartha (1993) ArticleTitleCobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS Appl Environ Microbiol 59 290–295

    Google Scholar 

  • TW Clarkson (1992) ArticleTitleMercury: major Issues in Environ Health Environ Health Perspectives 100 31–38 Occurrence Handle10.2307/3431518

    Article  Google Scholar 

  • DR Cobos JM Baker EA Nater (2002) ArticleTitleConditional sampling for measuring mercury vapor fluxes Atmos Environ 36 4309–4321 Occurrence Handle10.1016/S1352-2310(02)00400-4

    Article  Google Scholar 

  • G Compeau R Bartha (1985) ArticleTitleSulfate reducing bacteria: principal methylators of mercury in anoxic estuarine sediments Appl Environ Microbiol 53 261–265

    Google Scholar 

  • CM Cooper WB Gillespie (2001) ArticleTitleArsenic and mercury concentrations in major landscape components of an intensively cultivated watershed Environ Pollut 111 67–74 Occurrence Handle10.1016/S0269-7491(00)00029-4

    Article  Google Scholar 

  • FA Cotton G Wilkinson (1988) Advanced Inorganic Chemistry EditionNumber5 John Wiley Sons New York, Toronto, Chichester, Brisbane, Singapore

    Google Scholar 

  • CT Discroll C Yan CL Schofield R Munson J Holsapple (1995) ArticleTitleThe role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack Lakes Water Air Soil Pollut 80 499–508 Occurrence Handle10.1007/BF01189700

    Article  Google Scholar 

  • D Dyrssen M Wedborg (1991) ArticleTitleThe sulfide-mercury(II) system in natural waters Water Air Soil Pollut 56 507–519 Occurrence Handle10.1007/BF00342295

    Article  Google Scholar 

  • MA Engle MS Gustin H Zhang (2001) ArticleTitleQuantifying natural source emissions from the Ivanhoe Mining District, north-central Nevada, USA Atmos Environ 35 3987–3997 Occurrence Handle10.1016/S1352-2310(01)00184-4

    Article  Google Scholar 

  • SC Fang (1978) ArticleTitleSorption and transformation of mercury vapor by dry soil Environmental Science and Technology 12 285–288 Occurrence Handle10.1021/es60139a004

    Article  Google Scholar 

  • SC Fang (1981) ArticleTitleStudies on the sorption of elemental Hg vapor by soils Arch Environ Contam Toxicol 10 193–201 Occurrence Handle10.1007/BF01055621

    Article  Google Scholar 

  • G Feick RA Horne D Yeapple (1972) ArticleTitleRelease of mercury from contaminated freshwater sediments by runoff of road deicing salt Science 175 1142–1143 Occurrence Handle10.1126/science.175.4026.1142

    Article  Google Scholar 

  • EA Forbes AM Posner JP Quirk (1974) ArticleTitleThe specific adsorption of organic Hg(II) species and Co(III) complex ions on goethite J Colloid Interf Sci 49 403–409 Occurrence Handle10.1016/0021-9797(74)90385-3

    Article  Google Scholar 

  • DEH Frear DE Dills (1967) ArticleTitleMechanism of the insecticidal action of mercury and mercury salts J Econ Entomol 60 970–974

    Google Scholar 

  • J Gavis JF Ferguson (1972) ArticleTitleThe cycling of mercury through environment Water Res 6 989–1008 Occurrence Handle10.1016/0043-1354(72)90053-X

    Article  Google Scholar 

  • AA Gillis DR Miller (2000) ArticleTitleSome local environmental effects on mercury emission and adsorption at a soil surface Sci Total Environ 260 191–200 Occurrence Handle10.1016/S0048-9697(00)00563-5

    Article  Google Scholar 

  • CC Gilmour EA Henry (1991) ArticleTitleMercury methylation in aquatic systems affected by acid deposition Environ Pollut 71 131–169 Occurrence Handle10.1016/0269-7491(91)90031-Q

    Article  Google Scholar 

  • JA Gowen GB Wiersma H Tai (1976) ArticleTitleMercury and 2,4-D levels in wheat and soils from sixteen states, 1969 Pest Monitor J 10 111–113

    Google Scholar 

  • DF Grigal (2002) ArticleTitleInputs and outputs of mercury from terrestrial watersheds: a review Environ Rev 10 1–39 Occurrence Handle10.1139/a01-013

    Article  Google Scholar 

  • MS Gustin H Biester CS Kim (2002) ArticleTitleInvestigation of light-enhanced emission of mercury from naturally enriched substrates Atmos Environ 36 3241–3254 Occurrence Handle10.1016/S1352-2310(02)00329-1

    Article  Google Scholar 

  • MS Gustin GE Rasmussen G Edwards W Schroeder J Kemp (1999) ArticleTitleApplication of a laboratory gas exchange chamber for assessment of in situ mercury emissions J Geophys Res 104 21,873–21,878

    Google Scholar 

  • HCH Hahne W Kroontje (1973) ArticleTitleSignificance of pH and chloride concentration on behavior of heavy metal pollutants: mercury(II), zinc(II), lead(II) J Environ Qual 2 444–450

    Google Scholar 

  • CL Hansen MD Zwolinski JW William (1984) ArticleTitleBacterial removal of mercury from sewerage Biotechnol Bioengi 26 1330–1333 Occurrence Handle10.1002/bit.260261110

    Article  Google Scholar 

  • H Hintelmann PM Welbourn RD Evans (1995) ArticleTitleBinding of methyl-mercury compounds by humic and fluvic acids Water Air Soil Pollut 80 1031–1034 Occurrence Handle10.1007/BF01189760

    Article  Google Scholar 

  • H Hintelmann PM Welbourn RD Evans (1997) ArticleTitleMeasurement of complexation of methyl-mercury(II) compounds by fresh water humic substances using equilibrium dialysis Environ Sci Technol 31 489–495 Occurrence Handle10.1021/es960318k

    Article  Google Scholar 

  • HW Holm MF Cox (1975) ArticleTitleTransformation of elemental mercury by bacteria Appl Microbiol 29 491–494

    Google Scholar 

  • TJ Hogg JWB Stewart JR Bethany (1978) ArticleTitleInfluence of the chemical form of mercury on its adsorption and ability to leach through soils J Environ Qual 7 440–445

    Google Scholar 

  • Hultberg H, Iverfeldt A, Lee YH. 1994 In Watras CJ, Huckabee W. eds. Mercury Pollution–Intregration and Synthesis. Boca Raton FL: Lewis Publishers, pp. 313–322.

  • JP Hurley JM Benoit CL Babiarz MM Shafer AW Andren JR Sullivan R Hammond DA Webb (1995) ArticleTitleInfluences of watershed characteristics on mercury levels in Wisconsin Rivers Environ Sci Technol 29 1867–1875 Occurrence Handle10.1021/es00007a026

    Article  Google Scholar 

  • Y Inoue M Munemori (1979) ArticleTitleCoprecipitation of mercury(II) with iron(III) hydroxide Environ Sci Technol 13 443–445 Occurrence Handle10.1021/es60152a001

    Article  Google Scholar 

  • TA Jackson (1978) ArticleTitleThe biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon, Canada, a proposed method for limiting heavy-metal pollution from natural waters Environ Geol 2 173–189 Occurrence Handle10.1007/BF02430671

    Article  Google Scholar 

  • TA Jackson (1989) ArticleTitleThe influence of clay minerals, oxides, humic matter on the methylation and demethylation of mercury by micro-organisms in freshwater sediments Appl Organomet Chem 3 1–30 Occurrence Handle10.1002/aoc.590030103

    Article  Google Scholar 

  • TA Jackson (1998) Mercury in aquatic ecosystems WJ Langston MJ Bebianno (Eds) Metal Metabolism in Aquatic Environments Chapman and Hall Publishers London 76–157

    Google Scholar 

  • Johansson K, Boyle RW. 1972 Geochemistry of mercury and origins of natural contamination of the environment. Canadian Min Metall Bull January, 32–39.

  • Johansson K, Iverfeldt A. 1994 In Watras CJ, Huckabee JW. eds. Mercury Pollution–Integration and Synthesis. Boca Raton FL: Lewis Publishers, pp. 323–328.

  • K Johansson M Aastrup A Andersson L Bringmark A Iverfeldt (1991) ArticleTitleMercury in Swedish forest soils and water-assessment of critical load Water Air Soil Pollut 56 267–281 Occurrence Handle10.1007/BF00342276

    Article  Google Scholar 

  • DW Johnson SE Lindberg (1995) ArticleTitleThe biogeochemical cycling of Hg in forests: alternative methods for quantifying total deposition and soil emission Water Air Soil Pollut 80 1069–1077 Occurrence Handle10.1007/BF01189767

    Article  Google Scholar 

  • H Kernorff M Schnitzer (1980) ArticleTitleSorption of metals on humic acid Geochim Cosmochim Acta 44 1708–1710

    Google Scholar 

  • KH Kim PJ Hansom MO Barnett SE Lindberg (1997) Biogeochemistry of mercury in the air-soil-plant system A Sigel H Sigel (Eds) Metal Ions in Biological Systems Marcel Dekker, Inc. New York, Basel, Hong Kong

    Google Scholar 

  • DG Kinniburgh ML Jackson (1978) ArticleTitleAdsorption of mercury(II) by iron hydrous oxide gel Soil Sci Soc Am J 42 45–47 Occurrence Handle10.2136/sssaj1978.03615995004200010010x

    Article  Google Scholar 

  • DH Klein (1972) ArticleTitleMercury and other metals in urban soils Environ Sci Technol 6 560–562 Occurrence Handle10.1021/es60065a003

    Article  Google Scholar 

  • DP Krabbenhoft C Babiarz (1992) ArticleTitleThe role of groundwater transport in aquatic mercury cycling Water Resour Res 28 3119–3128 Occurrence Handle10.1029/92WR01766

    Article  Google Scholar 

  • BK Krauskopf DK Bird (1995) Introduction to Geochemistry EditionNumber3 McGraw Hill Publishers NY 647

    Google Scholar 

  • ER Landa (1978a) ArticleTitleThe retention of mercury vapor by soils Geochem Cosmochim Acta 42 1407–1411 Occurrence Handle10.1016/0016-7037(78)90046-7

    Article  Google Scholar 

  • ER Landa (1978b) ArticleTitleSoil water content and temperature as factors in the volatile loss of applied mercury(II) from soils Soil Sci 126 44–48 Occurrence Handle10.1097/00010694-197807000-00008

    Article  Google Scholar 

  • Lechler PJ, Miller JR, Hsu L, Desilets MO. 1995 Understanding mercury mobility at the Carson River Superfund Site, Nevada, USA. Intepretation of Mercury Speciaition Results from Mill Tailings, Soils and Sediments. In Proceedings of the International Conference on Heavy Metals in the Environment, Hamburg, 1995; CEP Consults: Edinburgh, 1995, Vol. 2, pp. 315–318.

  • JO Leckie RO James (1974) Control mechanisms for trace metals in natural waters AJ Rubin (Eds) Aqueous-Environ Chemistry of Metals Ann Arbor Sci Publishers Ann Arbor MI 1–76

    Google Scholar 

  • YH Lee H Hutlberg (1990) ArticleTitleMethyl-mercury in some Swedish surface waters Environ Toxicol Chem 9 833–841 Occurrence Handle10.1897/1552-8618(1990)9[833:MISSSW]2.0.CO;2

    Article  Google Scholar 

  • YH Lee A Iverfledt (1991) ArticleTitleMeasurement of methyl-mercury and mercury in run-off, lake, rain waters Water Air Soil Pollut 56 309–321 Occurrence Handle10.1007/BF00342279

    Article  Google Scholar 

  • SE Lindberg DR Jackson JW Huckabee SA Janzen MJ Levin JR Lund (1979) ArticleTitleAtmospheric emission and plant uptake of mercury from agricultural soils near the Almaden Mercury Mine J Environ Qual 8 572–578 Occurrence Handle10.2134/jeq1979.84572x

    Article  Google Scholar 

  • SE Lindberg H Zhang M Gustin A Vette F Marisk J Owens A Casimir R Ebinghaus G Edwards C Fitzgerald J Kemp HH Kock J London M Majewski M Poissant M Pilote F Rasmussen D Schaedlich D Scheeberger J Sommar R Turner D Wallschlager Z. Xiao (1999) ArticleTitleIncreases in mercury emissions from desert soils in response to rainfall and irrigation J Geophys Res 104 21879–21888 Occurrence Handle10.1029/1999JD900202

    Article  Google Scholar 

  • O Lindqvist K Johasson M Aastrup A Andersson L Bringmark G Hovsenius L Hakanson A Iverfelt M Meili B Timm (1991) ArticleTitleMercury in the Swedish environment-recent research on causes, consequences and corrective measures Water Air Soil Pollution 55 1–253 Occurrence Handle10.1007/BF00542429

    Article  Google Scholar 

  • RA Lockwood KY Chen (1973) ArticleTitleAdsorption of Hg(II) by hydrous manganese oxides Environ Sci Technol 7 1028 Occurrence Handle10.1021/es60083a006

    Article  Google Scholar 

  • P Lorey CT Driscoll (1999) ArticleTitleHistorical trends of mercury deposition to Adirondack lakes Environ Sci Technol 33 718–722 Occurrence Handle10.1021/es9800277

    Article  Google Scholar 

  • L Lovgren S Sjoberg (1989) ArticleTitleEquilibrium approaches to natural water systems. 1. Complexation reactions of copper(II), cadmiun(II), and mercury(II) with dissolved organic matter in a concentrated bog-matter. Water Res 23 327–335 Occurrence Handle10.1016/0043-1354(89)90098-5

    Article  Google Scholar 

  • Lyon BF, Gilkinson MR, Marimpietri TB. 1997 Application of the IEM-2M surface water model to airborne mercury deposited from hazardous waste combustors. Prepared for the Office of Solid Waste, United States Environ Protection Agency (USEPA).

  • MG MacNaughton RO James (1974) ArticleTitleAdsoprtion of aqueous mercury(II) complexes at the oxide/water interface J Colloid Interf Sci 47 431–440 Occurrence Handle10.1016/0021-9797(74)90275-6

    Article  Google Scholar 

  • MH Martin (1988) Bio-inorganic chemistry of toxicity. G Seiler H Sigel (Eds) Handbook of Toxicity of Inorganic Compounds Marcel Dekker Inc. New York 9–25

    Google Scholar 

  • RP Mason WF Fitzgerald FM. Morel (1994) ArticleTitleThe biogeochemical cycling of elemental mercury: anthropogenic influences Geochim Cosmochim Acta 58 3191–3198 Occurrence Handle10.1016/0016-7037(94)90046-9

    Article  Google Scholar 

  • M. Meili (1991) ArticleTitleThe coupling of mercury and organic matter in the biogeochemical cycle towards a mechanistic model for the boreal forest zone Water Air Soil Pollut 56 333–347 Occurrence Handle10.1007/BF00342281

    Article  Google Scholar 

  • DR Miller H Akagi (1979) ArticleTitlepH affects mercury distribution Ecotoxicol and Environ Safety 3 36–38 Occurrence Handle10.1016/0147-6513(79)90057-5

    Article  Google Scholar 

  • DW Newton R Ellis GW Paulsen (1976) ArticleTitleEffect of pH and complex formation of mercury(II) adsorption to bentonite J Environ Qual 5 251–254

    Google Scholar 

  • L Poissant A Casimir (1998) ArticleTitleWater-air and soil-air exchange rate of total gaseous mercury measured at background sites Atmos Environ 32 883–893 Occurrence Handle10.1016/S1352-2310(97)00132-5

    Article  Google Scholar 

  • S Ramamoorthy N Kushner (1975) ArticleTitleHeavy metal binding components of river water J Fish Res Board Can 32 1755–1766

    Google Scholar 

  • S Ramamoorthy BR Rust (1978) ArticleTitleHeavy metal exchange processes in sediment-water systems Environ Geol 2 165–172 Occurrence Handle10.1007/BF02430670

    Article  Google Scholar 

  • M Ravichandran GR Aiken JN Ryan MM Reddy (1999) ArticleTitleInhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades Environ Sci Technol 33 1418–1423 Occurrence Handle10.1021/es9811187

    Article  Google Scholar 

  • MM Reddy GR Aiken (2001) ArticleTitleFluvic acidsulfide ion competition for mercury ion binding in the Florida Everglades Water Air Soil Pollut 132 89–104 Occurrence Handle10.1023/A:1012073503678

    Article  Google Scholar 

  • RS Reimers PA Krenkel (1974) ArticleTitleKinetics of mercury adsorption and desorption in sediments Water Pollut Control Fed 46 352–365

    Google Scholar 

  • RD Rogers (1979) ArticleTitleVolatility of Hg from soils amended with various Hg compounds Soil Sci Soc Am J 43 289–291 Occurrence Handle10.2136/sssaj1979.03615995004300020009x

    Article  Google Scholar 

  • JM Rudd (1995) ArticleTitleSources of methyl mercury to freshwater ecosystems: a review Water Air Soil Pollut 80 697–713 Occurrence Handle10.1007/BF01189722

    Article  Google Scholar 

  • DW Schindler RH Hesslein R Wageman WS Broecker (1980) ArticleTitleEffects of acidification on mobalization of heavy metals and radionuclides from the sediments of a freshwater lake Can J Fish Aquat Sci 37 373–380 Occurrence Handle10.1139/f80-051

    Article  Google Scholar 

  • K Schluter HM Seip J Alstad (1995) ArticleTitleMercury translocation and evaporation in and from soils. I. Soil lysimeter experiments and the use of Hg-203 radio-labelled compounds. J Soil Contam 4 327–354

    Google Scholar 

  • K Schluter (2000) ArticleTitleReview: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ Geol 39 249–271 Occurrence Handle10.1007/s002540050005

    Article  Google Scholar 

  • E Schuster (1991) ArticleTitleThe behavior of mercury in the soil with special emphasis on complexation and adsorption processes-a review of the literature Water Air Soil Pollut 56 667–680 Occurrence Handle10.1007/BF00342308

    Article  Google Scholar 

  • SM Siegel BZ Siegel (1988) ArticleTitleTemperature determinants of plant-soil-air mercury relationships Water Air Soil Pollut 40 443–448

    Google Scholar 

  • J Silver (1981) Mechansims of bacterial resistances to toxic heavy metals: arsenic cadmium and mercury FE Brinckman RH Fish (Eds) Environ Speciation and Monitoring Needs for Trace Metals Containing Substances from Energy Related Processes National Bureau of Standards Washington, DC 301–314

    Google Scholar 

  • GR Southworth SE Lindberg H Zhang FR Anscombe (2004) ArticleTitleFugitive mercury emissions from a chlor-alkali factory: sources and fluxes to the atmosphere Atmos Environ 38 597–611 Occurrence Handle10.1016/j.atmosenv.2003.09.057

    Article  Google Scholar 

  • J St. Louis (1994) ArticleTitleImportance of wetlands as sources of methyl-mercury to boreal forest ecosystems Can J Fish Aquat Sci 51 1065–1076 Occurrence Handle10.1139/f94-106

    Article  Google Scholar 

  • VL St. Louis WM Rudd CA Kelly KG Beaty RJ Flett NT Roulet (1996) ArticleTitleProduction and loss of MeHg and loss of total-Hg from boreal forest catchments containing different types of wetlands Environ Sci Technol 30 2719–2729 Occurrence Handle10.1021/es950856h

    Article  Google Scholar 

  • M Taylor (1999) Intense rainfall events The University of South Alabama Mobile, Alabama

    Google Scholar 

  • Trost PB, Bisque RE. 1970 Distribution of mercury in soils. In Hartung R, Dinman BD, eds. Environmental Mercury Contamination. Ann Arbor Sci Publishers, pp. 178–196.

  • USEPA (U.S. Environ Protection Agency): 2001a TMDL for Total mercury in the Suwannee Watershed including listed segments of the Suwannee River. Total Maximum Daily Load (TMDL) Program.

  • USEPA (U.S. Environ Protection Agency): 2001b TMDL for total mercury in fish residue in the Middle and Lower Savannah Watershed for segments Clarks Hill Lake Dam to Stevens Creek Dam to US Highway 78/278 to Johnsons Landing to Brier Creek to the Tide Gate. Total Maximum Daily Load (TMDL) Program.

  • D Wallschlager RR Turner J London R Ebinghaus HH Kock J Sommar Z Xiao (1999) ArticleTitleFactors affecting the measurement of mercury emissions from soils with flux chambers J Geophys Res 104 21,859–21,871 Occurrence Handle10.1029/1999JD900314

    Article  Google Scholar 

  • CJ Watras NS Bloom KA Claas CC Morrison CC Gilmour SR Craig (1995) ArticleTitleMethyl-mercury production in the anoxic hypolimnion of a dimictic seepage lake Water Air Soil Pollut 80 735–745 Occurrence Handle10.1007/BF01189725

    Article  Google Scholar 

  • Watras CJ, Bloom NS, Hudson RJM, Gherini S, Munson R, Claas SA, Morrison KA, Hurley J, Wiener JG, Fitzgerald WF, Mason R, Vandal G, Powell D, Rada R, Rislov L, Winfrey M, Elder J, Krabbenhoft D, Andren AW, Babiarz C, Porcella DB, Huckabee JW. 1994. In Watras CJ, Huckabee W, eds. Mercury Pollution-Intregration and Synthesis. Boca Raton FL: Lewis Publishers, pp. 153–180.

  • SA Wilson JH Weber (1979) ArticleTitleAn EPR study of the reduction of vanadium(V) and vanadium(IV) by fluvic acid Chem Geol 26 345–354 Occurrence Handle10.1016/0009-2541(79)90056-1

    Article  Google Scholar 

  • MR Winfrey JW Rudd (1990) ArticleTitleEnviron factors affecting the formation of methyl-mercury in low pH lakes Environ Toxicol and Chem 9 853–869 Occurrence Handle10.1897/1552-8618(1990)9[853:EFATFO]2.0.CO;2

    Article  Google Scholar 

  • ZF Xiao J Munthe WH Schroeder O Lindqvist (1991) ArticleTitleVertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden Tellus 43B 267–279

    Google Scholar 

  • H Xu B Allard (1991) ArticleTitleEffects of fluvic acid on the speciation and mobility of mercury in aqueous solutions Water Air Soil Pollut 56 709–717 Occurrence Handle10.1007/BF00342311

    Article  Google Scholar 

  • Y Yin HE Allen CP Huang DL Sparks PF Sanders (1997) ArticleTitleKinetics of mercury(II) adsorption and desorption on soil Environ Sci Technol 31 496–503 Occurrence Handle10.1021/es9603214

    Article  Google Scholar 

  • H Zhang SE Lindberg (1999) ArticleTitleProcesses influencing the emission of mercury from soils: a conceptual model. J Geophys Res 104 21,889–21,896

    Google Scholar 

  • H Zhang SE Lindberg FJ Marsik GJ Keeler (2001) ArticleTitleMercury air/surface exchange kinetics of background soils of the Tahquamenon River Watershed in the Michigan Upper Peninsula Water Air Soil Pollut 126 151–169 Occurrence Handle10.1023/A:1005227802306

    Article  Google Scholar 

  • L Zhang D Planas (1994) ArticleTitleBiotic and abiotic mercury methylation and demethylation in sediments Bull of Environ Contam Toxicol 52 691–698

    Google Scholar 

  • Zyrin NG, Zvonarez BA. 1983 Regularities of mercury sorption by soils: isotherms of mercury sorption by humus horizons of soils. Moscow University Soil Sci Bull. Allerton Press, 38, 49.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek G. Williamson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, M.C., Williamson, D.G. Principal Biogeochemical Factors Affecting the Speciation And Transport of Mercury through the terrestrial environment. Environ Geochem Health 26, 421–434 (2004). https://doi.org/10.1007/s10653-004-1308-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-004-1308-0

Keywords

Navigation