Skip to main content

Advertisement

Log in

Spatiotemporal differences in the arbuscular mycorrhizal fungi communities in soil and roots in response to long-term organic compost inputs in an intensive agricultural cropping system on the North China Plain

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Fertilizer management is important for minimizing nutrient losses from intensive agroecosystems. An increasing amount of organic fertilizer has been applied to overcome the problems associated with mineral fertilizers. Thus, an understanding of the diversity and community structure changes in arbuscular mycorrhizal fungi (AMF) in response to long-term organic fertilizer management can be potentially significant in the development of nutrient management strategies.

Materials and methods

Here, a study was conducted to investigate the vertical distribution of AMF in a calcareous field and the temporal structure of AMF in maize roots with different levels of continuous fertilization over a 13-year period. T-RFLP and clone library construction were used to investigate AMF community in this study. Canonical correspondence analysis was performed to determine the significance of environmental variable that may affect the AMF community composition.

Results and discussion

Our results showed that the Shannon-Weiner and evenness indexes of soil AMF community decreased, while AMF richness was not significantly affected. Organic compost application reduced root colonization, while the negative influence of conventional inorganic fertilization was minor. The effect was significant at 13 leaf collar stage of maize. Crop phenology especially growth stages might override fertilizer supply in determining the community composition of active root inhabiting AM fungi. Significant differences in the community structure of soil AMF were observed between control and organic compost treatments in surface soil, and the community shift was primarily attributable to soil organic matter and nutrient contents (total nitrogen and carbon, Olsen-P, and exchangeable K). Vertical distribution of AMF was significantly related to soil electrical conductivity and pH values.

Conclusions

Our results indicated that AMF community assemblage was complex and dependent on fertilization-mediated changes in soil properties, soil depth, and crop phenology. The modification of AMF communities by fertilization may have great impact on soil health and ecosystem services in intensive agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ai C, Liang G, Sun J, Wang X et al (2012) Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 173:330–338

    Article  CAS  Google Scholar 

  • Albertsen A, Ravnskov S, Green H et al (2006) Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38:1008–1014

    Article  CAS  Google Scholar 

  • Alguacil MM, Torrecillas E, Caravaca F et al (2011) The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Biol Biochem 43:1498–1508

    Article  CAS  Google Scholar 

  • Alloush GA, Clark RB (2001) Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun Soil Sci Plant Anal 32:231–254

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Bainard LD, Bainard JD, Hamel C et al (2014) Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol 88:333–344

    Article  CAS  Google Scholar 

  • Bhadalung NN, Suwanarit A, Dell B et al (2005) Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system. Plant Soil 270:371–382

    Article  CAS  Google Scholar 

  • Bremner JM (1996) Part 3-chemical methods. In: Sparks DL (ed) Methods of soil analysis. ASA and SSSA, Madison, pp 1085–1121

    Google Scholar 

  • Cavagnaro TR (2015) Biologically regulated nutrient supply systems: compost and arbuscular mycorrhizas-a review. Adv Agron 129:293–321

    Article  Google Scholar 

  • Chadwick D, Jia W, Tong YA et al (2015) Improving manure nutrient management towards sustainable agricultural intensification in China. Agric Ecosyst Environ 209:34–46

    Article  Google Scholar 

  • Chen YL, Zhang X, Ye JS et al (2014) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem 69:371–381

    Article  CAS  Google Scholar 

  • Copetta A, Bardi L, Bertolone E et al (2011) Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosyst 145:106–115

    Article  Google Scholar 

  • Cozzolino V, Meo VD, Monda H et al (2016) The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol Fertil Soils 52:15–29

    Article  CAS  Google Scholar 

  • Dai J, Hu JL, Lin XG et al (2013) Arbuscular mycorrhizal fungal diversity, external mycelium length, and glomalin-related soil protein content in response to long-term fertilizer management. J Soils Sediments 13:1–11

    Article  CAS  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH et al (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    Article  CAS  Google Scholar 

  • Daniels BA, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, pp 29–35

    Google Scholar 

  • Demelash N, Bayu W, Tesfaye S et al (2014) Current and residual effects of compost and inorganic fertilizer on wheat and soil chemical properties. Nutr Cycl Agroecosyst 100:357–367

    Article  CAS  Google Scholar 

  • Deng Y, Chen K, Teng W et al (2014) Is the inherent potential of maize roots efficient for soil phosphorus acquisition? PLoS One 9:e90287

    Article  CAS  Google Scholar 

  • Dickie IA, FitzJohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270

    Article  CAS  Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    Article  CAS  Google Scholar 

  • van Diepen LT, Lilleskov EA, Pregitzer KS (2011) Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Mol Ecol 20:799–811

    Article  CAS  Google Scholar 

  • Donn S, Wheatley RE, Mckenzie BM et al (2014) Improved soil fertility from compost amendment increases root growth and reinforcement of surface soil on slopes. Ecol Eng 71:458–465

    Article  Google Scholar 

  • Douds DD, Millner PD (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77–93

    Article  Google Scholar 

  • Douds DD, Reider C (2003) Inoculation with mycorrhizal fungi increases the yield of green peppers in a high P soil. Biol Agric Hortic 21:91–102

    Article  Google Scholar 

  • Douds DD, Galvez L, Frankesnyder M et al (1997) Effect of compost addition and crop rotation point upon VAM fungi. Agric Ecosyst Environ 65:257–266

    Article  Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Fierer N, Ladau J, Clemente JC et al (2013) Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342:621–624

    Article  CAS  Google Scholar 

  • Gai JP, Feng G, Li XL (2004) Diversity of arbuscular mycorrhizal fungi in field soils from North China. Chin Biodivers 12:435–440

    Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G et al (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR et al (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  Google Scholar 

  • Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37:112–129

    Article  CAS  Google Scholar 

  • Gryndler M, Larsen J, Hršelová H et al (2006) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16:159–166

    Article  CAS  Google Scholar 

  • Gryndler M, Sudová R, Püschel D et al (2008) Cultivation of high-biomass crops on coal mine spoil banks: can microbial inoculation compensate for high doses of organic matter? Bioresour Technol 99:6391–6399

    Article  CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  Google Scholar 

  • Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480

    Article  CAS  Google Scholar 

  • Helgason T, Daniell TJ, Husband R et al (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  CAS  Google Scholar 

  • Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938

    Article  CAS  Google Scholar 

  • Higo M, Isobe K, Yamaguchi M et al (2013) Diversity and vertical distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational systems. Biol Fertil Soils 49:1085–1096

    Article  Google Scholar 

  • Hu JL, Lin XG, Wang JH et al (2009) Population size and specific potential of P-mineralizing and –solubilizing bacteria under long-term P-deficiency fertilization in a sandy loam soil. Pedobiologia 53:49–58

    Article  CAS  Google Scholar 

  • Jacquot E, Tuinen DV, Gianinazzi S et al (2000) Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant Soil 226:179–188

    Article  CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–379

    Article  CAS  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Article  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L et al (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Joner EJ (2000) The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean clover. Biol Fertil Soils 32:435–440

    Article  Google Scholar 

  • Jordan NR, Zhang J, Huerd S (2000) Arbuscular-mycorrhizal fungi: potential roles in weed management. Weed Res 40:397–410

    Article  Google Scholar 

  • Ju XT, Liu XJ, Zhang FS et al (2004) Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. Ambio 33:300–305

    Article  Google Scholar 

  • Ju XT, Wan YJ, Kou CL et al (2005) Nitrate accumulation in agricultural soils and groundwater of the North China Plain. In: Li (ed) Plant nutrition for food security, human health and environmental protection. Tsinghua University Press, Beijing, pp 1056–1057

    Google Scholar 

  • Ju XT, Kou CL, Zhang FS et al (2006) Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environ Pollut 143:117–125

    Article  CAS  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M et al (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231:65–79

    Article  CAS  Google Scholar 

  • Lee J, Lee S, Young JP (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  CAS  Google Scholar 

  • Lin XG, Feng YZ, Zhang HY et al (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771

    Article  CAS  Google Scholar 

  • Liu XJ, Wang JC, Lu SH et al (2003) Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crop Res 83:297–311

    Article  Google Scholar 

  • Liu Y, He L, An L et al (2009) Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiol Ecol 67:81–92

    Article  CAS  Google Scholar 

  • Liu YJ, Shi GX, Mao L et al (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535

    Article  CAS  Google Scholar 

  • Liu W, Jiang SS, Zhang YL et al (2014) Spatiotemporal changes in arbuscular mycorrhizal fungal communities under different nitrogen inputs over a 5-year period in intensive agricultural ecosystems on the North China Plain. FEMS Microbiol Ecol 90:436–453

    Article  CAS  Google Scholar 

  • Liu W, Zhang YL, Jiang SS et al (2016) Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci Rep 6:24902

    Article  CAS  Google Scholar 

  • Lu F, Wang XK, Han B et al (2009) Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob Chang Biol 15:281–305

    Article  Google Scholar 

  • Mäder P, Flieβbach A, Dubois D et al (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  Google Scholar 

  • Maillard É, Angers DA (2014) Animal manure application and soil organic carbon stocks: a meta-analysis. Glob Chang Biol 20:666–679

    Article  Google Scholar 

  • Martínez-García LB, Armas C, Miranda JD et al (2011) Shrubs influence arbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biol Biochem 43:682–689

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG et al (1990) New method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Michalczyk A, Kersebaum KC, Roelcke M et al (2014) Model-based optimisation of nitrogen and water management for wheat–maize systems in the North China plain. Nutr Cycl Agroecosyst 98:203–222

    Article  CAS  Google Scholar 

  • Oehl F, Sieverding E, Mader P et al (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K et al (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  Google Scholar 

  • Oehl F, Laczko E, Oberholzer HR et al (2017) Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biol Fertil Soils 53:777–791

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS et al (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: USDA Circ. US Govt. Print. Office, Washington DC, pp 939

  • Pei H, Shen Y, Scanlon BR et al (2013) Comparison of agricultural production and fertilizer consumption in the North China Plain (NCP) and the US High Plains (HP). Am Geophys Union Fall Meet Abstr 1:1218

    Google Scholar 

  • Peng YF, Yu P, Li XX et al (2013) Determination of the critical soil mineral nitrogen concentration for maximizing maize grain yield. Plant Soil 372:41–51

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol 220:1059–1075

  • Qu Z, Wang J, Almøy T et al (2014) Excessive use of nitrogen in Chinese agriculture results in high N2O/ (N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Glob Chang Biol 20:1685–1698

    Article  Google Scholar 

  • Rasool R, Kukal SS, Hira GS (2008) Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize-wheat system. Soil Tillage Res 101:31–36

    Article  Google Scholar 

  • Richter J, Roelcke M (2000) The N-cycle as determined by intensive agriculture: examples from Central Europe and China. Nutr Cycl Agroecosyst 57:33–46

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  Google Scholar 

  • Scotti R, Pane C, Spaccini R et al (2016) On-farm compost: a useful tool to improve soil quality under intensive farming systems. Appl Soil Ecol 107:13–23

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Tian H, Drijber RA, Niu XS et al (2011) Spatio-temporal dynamics of an indigenous arbuscular mycorrhizal fungal community in an intensively managed maize agroecosystem in North China. Appl Soil Ecol 47:141–152

    Article  Google Scholar 

  • Tian H, Drijber RA, Zhang JL et al (2013) Impact of long-term nitrogen fertilization and rotation with soybean on the diversity and phosphorus metabolism of indigenous arbuscular mycorrhizal fungi within the roots of maize (Zea mays L.). Agric Ecosyst Environ 164:53–61

    Article  CAS  Google Scholar 

  • Toshisuke M, Iwao H, Kazuo M et al (2008) Evaluation of N and P mass balance in paddy rice culture along Kahokugata Lake, Japan, to assess potential lake pollution. Paddy Water Environ 6:355–362

    Article  Google Scholar 

  • Ueji M, Inao K (2001) Rice paddy field herbicides and their effects on the environment and ecosystems. Weed Biol Manag 1:71–79

    Article  CAS  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • Vestberg M, Kahiluoto H, Wallius E (2011) Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351–361

    Article  Google Scholar 

  • Wang YY, Vestberg M, Walker C et al (2008) Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18:59–68

    Article  Google Scholar 

  • Wang FY, Hu JL, Lin XG et al (2011) Arbuscular mycorrhizal fungal community structure and diversity in response to long-term fertilization: a field case from China. World J Microbiol Biotechnol 27:67–74

    Article  CAS  Google Scholar 

  • Wang J, Wang EL, Yang XG et al (2012) Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Clim Chang 113:825–840

    Article  Google Scholar 

  • Watts-Williams SJ, Cavagnaro TR (2012) Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biol Fertil Soils 48:285–294

    Article  CAS  Google Scholar 

  • Xiong J, Sun H, Peng F et al (2014) Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiol Ecol 89:281–292

    Article  CAS  Google Scholar 

  • Xu T, Ma YB, Hao XY et al (2009) Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant Soil 323:143–151

    Article  CAS  Google Scholar 

  • Yang C, Ellouze W, Navarro-Borrell A et al (2014) Management of the arbuscular mycorrhizal symbiosis in sustainable crop production. In: Solaiman ZM, Abbott LK, Varma A (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer Press, Heidelberg, pp 89–119

    Chapter  Google Scholar 

  • Yang W, Guo Y, Wang X et al (2017) Temporal variations of soil microbial community under compost addition in black soil of Northeast China. Appl Soil Ecol 121:214–222

    Article  Google Scholar 

  • Yang W, Gu S, Xin Y et al (2018) Compost addition enhanced hyphal growth and sporulation of arbuscular mycorrhizal fungi without affecting their community composition in the soil. Front Microbiol 9:169

    Article  Google Scholar 

  • Yu L, Nicolaisen M, Larsen J et al (2013) Organic fertilization alters the community composition of root associated fungi in Pisum sativum. Soil Biol Biochem 58:36–41

    Article  CAS  Google Scholar 

  • Zhang WL, Xu AG, Ji HJ et al (2004) Estimation of agricultural non-point source pollution in China and the alleviating strategies III. A review of policies and practices for agricultural non-point source pollution control in China. Sci Agric Sin 37:1008–1017

    Google Scholar 

  • Zhen L, Zoebisch MA, Chen G et al (2006) Sustainability of farmers’ soil fertility management practices: a case study in the North China Plain. J Environ Manag 79:409–419

    Article  CAS  Google Scholar 

  • Zhu ZL, Chen DL (2002) Nitrogen fertilizer use in China-contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosyst 63:117–127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Ji Li of China Agricultural University for providing assistance with sampling at the experimental site.

Funding

This work was financially supported by the National Key Research and Development Program of China (2017YFD0200200/2017YFD0200202/2016YFE0101100) and the National Natural Science Foundation of China (grant nos. 31272251, 31400528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Zhang.

Additional information

Responsible editor: Jizheng He

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 152 kb)

ESM 2

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, Y., Jiang, S. et al. Spatiotemporal differences in the arbuscular mycorrhizal fungi communities in soil and roots in response to long-term organic compost inputs in an intensive agricultural cropping system on the North China Plain. J Soils Sediments 19, 2520–2533 (2019). https://doi.org/10.1007/s11368-019-02244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02244-3

Keywords

Navigation