Skip to main content

Advertisement

Log in

Mediation of the APOE associations with Alzheimer’s and coronary heart diseases through body mass index and lipids

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The APOE ε2/ε3/ε4 polymorphism is associated with multiple non-Mendelian traits, including high- (HDL-C) and low- (LDL-C) density lipoprotein cholesterol, triglycerides, body mass index (BMI), coronary heart disease (CHD), and Alzheimer’s disease (AD). Lipids and BMI are risk factors for AD and CHD. Causal connections between the ε2 and ε4 alleles and these traits remain, however, poorly understood. We leverage comprehensive analyses of longitudinal data from four studies to examine potentially causal heterogeneous connections between these alleles, lipids, BMI, and diseases. We emphasize mutual mediation roles of lipids and BMI in their associations with the ε2 and ε4 alleles and their mediation roles in the associations of these alleles with AD and CHD. We confirmed previously reported significant univariate associations of these alleles with each trait, except CHD. We found, however, that most of the univariate- and mediation-analysis associations were affected by antagonistic heterogeneity/mediation. The mutual mediation analysis identified the associations of the APOE alleles with LDL-C as the least heterogeneous. The ε2 and ε4 alleles were associated with CHD through lipids, led by beneficial (βIE =  − 0.071, pIE = 2.28 × 10−10) and adverse (βIE = 0.019, pIE = 7.37 × 10−6) associations, respectively, through LDL-C. Both these alleles were adversely associated with CHD through triglycerides. For AD, only BMI partially mediated the adverse association of the ε4 allele with AD (βIE = 0.016, pIE = 2.09 × 10−2). Our results suggest different roles of BMI and lipids in the AD and CHD pathogeneses. More comprehensive studies of causal connections between genetic variants and non-Mendelian traits are required as they can be critically affected by heterogeneous antagonistic relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This manuscript was prepared using limited access data obtained though dbGaP from ARIC study (phs000280.v5.p1), CHS (phs000287.v5.p1), FHS (phs000007.v28.p10), MESA (phs000209.v13.p3), and LOADFS (phs000168.v2.p2).

References

  1. Nowbar AN, Gitto M, Howard JP, Francis DP, Al-Lamee R. Mortality from ischemic heart disease. Circ Cardiovasc Qual Outcomes. 2019;12:e005375–11.

  2. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020;16:391–460.

  3. Matthews KA, et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged >/=65 years. Alzheimers Dement. 2019;15:17–24.

    Article  PubMed  Google Scholar 

  4. Gottesman RF, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the atherosclerosis risk in communities (ARIC) cohort. JAMA Neurol. 2017;74:1246–54.

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Bruijn RF, Ikram MA. Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Med. 2014;12:130.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.

    Article  CAS  PubMed  Google Scholar 

  7. Tublin JM, Adelstein JM, Del Monte F, Combs CK, Wold LE. Getting to the heart of Alzheimer’s disease. Circ Res. 2019;124:142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nation DA, et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25:270–276.

  9. Sweeney MD, et al. Vascular dysfunction – the disregarded partner of Alzheimer’s disease. Alzheimers Dement. 2019;15:158–67.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nazarian A, Arbeev KG, Yashkin AP, Kulminski AM. Genetic heterogeneity of Alzheimer’s disease in subjects with and without hypertension. GeroScience. 2019;41:137–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Virani SS, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–596.

    Article  PubMed  Google Scholar 

  12. Fitzpatrick AL, et al. Midlife and late-life obesity and the risk of dementia: cardiovascular health study. Arch Neurol. 2009;66:336–42.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kiliaan AJ, Arnoldussen IA, Gustafson DR. Adipokines: a link between obesity and dementia? Lancet Neurol. 2014;13:913–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP Jr, Yaffe K. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ. 2005;330:1360.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Franx BAA, Arnoldussen IAC, Kiliaan AJ, Gustafson DR. Weight loss in patients with dementia: considering the potential impact of pharmacotherapy. Drugs Aging. 2017;34:425–36.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pegueroles J, et al. Obesity and Alzheimer’s disease, does the obesity paradox really exist? A magnetic resonance imaging study Oncotarget. 2018;9:34691–8.

    PubMed  Google Scholar 

  17. Kivipelto M, Mangialasche F. Alzheimer’s disease: to what extent can Alzheimer’s disease be prevented? Nat Rev Neurol. 2014;10:552–3.

    Article  CAS  PubMed  Google Scholar 

  18. Lee H, et al. Associations between vascular risk factors and subsequent Alzheimer’s disease in older adults. Alzheimers Res Ther. 2020;12:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Emerging Risk Factors, C, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.

    Article  Google Scholar 

  20. Freiberg JJ, Tybjaerg-Hansen A, Jensen JS, Nordestgaard BG. Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA. 2008;300:2142–52.

    Article  CAS  PubMed  Google Scholar 

  21. Sarwar N, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 2007;115:450–8.

    Article  CAS  PubMed  Google Scholar 

  22. Teslovich TM, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Willer CJ, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo Y, et al. Gene-centric meta-analyses of 108 912 individuals confirm known body mass index loci and reveal three novel signals. Hum Mol Genet. 2013;22:184–201.

    Article  CAS  PubMed  Google Scholar 

  25. Kulminski AM, et al. Independent associations of TOMM40 and APOE variants with body mass index. Aging Cell. 2019;18:e12869.

    Article  PubMed  CAS  Google Scholar 

  26. Corder EH, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–3.

    Article  CAS  PubMed  Google Scholar 

  27. Willer CJ, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belloy ME, Napolioni V, Greicius MD. A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron. 2019;101:820–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reiman EM, et al. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun. 2020;11:667–11.

  30. Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer’s disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15:501–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeong W, Lee H, Cho S, Seo J. ApoE4-induced cholesterol dysregulation and its brain cell type-specific implications in the pathogenesis of Alzheimer’s disease. Mol Cells. 2019;42:739–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mamun AA, et al. Molecular insight into the therapeutic promise of targeting APOE4 for Alzheimer’s disease. Oxid Med Cell Longev. 2020;2020:5086250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Safieh M, Korczyn AD, Michaelson DM. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med. 2019;17:64.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Montagne A, et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature. 2020;581:71–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu L, Zhao L. ApoE2 and Alzheimer’s disease: time to take a closer look. Neural Regen Res. 2016;11:412–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tai LM, et al. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol. 2016;131:709–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu M, et al. Apolipoprotein E gene variants and risk of coronary heart disease: a meta-analysis. Biomed Res Int. 2016;2016:3912175.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang MD, et al. Apolipoprotein E gene polymorphism and risk for coronary heart disease in the Chinese population: a meta-analysis of 61 studies including 6634 cases and 6393 controls. PLoS One. 2014;9:e95463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bennet AM, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298:1300–11.

    Article  CAS  PubMed  Google Scholar 

  40. Wilson PW, et al. Apolipoprotein E alleles, dyslipidemia, and coronary heart disease. The Framingham Offspring Study JAMA. 1994;272:1666–71.

    CAS  PubMed  Google Scholar 

  41. Ward H, et al. APOE genotype, lipids, and coronary heart disease risk: a prospective population study. Arch Intern Med. 2009;169:1424–9.

    Article  PubMed  Google Scholar 

  42. Volcik KA, et al. Apolipoprotein E polymorphisms predict low density lipoprotein cholesterol levels and carotid artery wall thickness but not incident coronary heart disease in 12,491 ARIC study participants. Am J Epidemiol. 2006;164:342–8.

    Article  PubMed  Google Scholar 

  43. Kapur S, MacRae CA. Deep phenotyping in cardiovascular disease. Curr Treat Options Cardiovasc Med. 2020;23:1.

    Article  Google Scholar 

  44. Kulminski AM, et al. Uncoupling associations of risk alleles with endophenotypes and phenotypes: insights from the ApoB locus and heart-related traits. Aging Cell. 2017;16:61–72.

    Article  CAS  PubMed  Google Scholar 

  45. Investigators TA. The atherosclerosis risk in communities (ARIC) study – design and objectives. Am J Epidemiol. 1989;129:687–702.

    Article  Google Scholar 

  46. Fried LP, et al. The cardiovascular health study: design and rationale. Ann Epidemiol. 1991;1:263–76.

    Article  CAS  PubMed  Google Scholar 

  47. Bild DE, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 2002;156:871–81.

    Article  PubMed  Google Scholar 

  48. Splansky GL, et al. The third generation cohort of the national heart, lung, and blood institute’s Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol. 2007;165:1328–35.

    Article  PubMed  Google Scholar 

  49. Lee JH, et al. Analyses of the national institute on aging late-onset Alzheimer’s disease family study: implication of additional loci. Arch Neurol. 2008;65:1518–26.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Das S, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. He L, et al. Corrigendum: pleiotropic meta-analyses of longitudinal studies discover novel genetic variants associated with age-related diseases. Front Genet. 2017;8:226.

    Article  PubMed  Google Scholar 

  53. He L, et al. Pleiotropic meta-analyses of longitudinal studies discover novel genetic variants associated with age-related diseases. Front Genet. 2016;7:179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lange T, Vansteelandt S, Bekaert M. A simple unified approach for estimating natural direct and indirect effects. Am J Epidemiol. 2012;176:190–5.

    Article  PubMed  Google Scholar 

  55. Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60.

    Article  CAS  PubMed  Google Scholar 

  56. Rochon J, du Bois A, Lange T. Mediation analysis of the relationship between institutional research activity and patient survival. BMC Med Res Methodol. 2014;14:9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Khan TA, et al. Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: systematic review and meta-analysis of 14,015 stroke cases and pooled analysis of primary biomarker data from up to 60,883 individuals. Int J Epidemiol. 2013;42:475–92.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wolters FJ, et al. The impact of APOE genotype on survival: results of 38,537 participants from six population-based cohorts (E2-CHARGE). PLoS One. 2019;14:e0219668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kulminski AM, Loika Y, Nazarian A, Culminskaya I. Quantitative and qualitative role of antagonistic heterogeneity in genetics of blood lipids. J Gerontol A Biol Sci Med Sci. 2020;75:1811–9.

    Article  CAS  PubMed  Google Scholar 

  60. Kulminski AM, et al. Pleiotropic meta-analysis of age-related phenotypes addressing evolutionary uncertainty in their molecular mechanisms. Front Genet. 2019;10:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet. 2013;14:483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tejedor MT, Garcia-Sobreviela MP, Ledesma M, Arbones-Mainar JM. The apolipoprotein E polymorphism rs7412 associates with body fatness independently of plasma lipids in middle aged men. PloS one. 2014;9:e108605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Yassine HN, Finch CE. APOE alleles and diet in brain aging and Alzheimer’s disease. Front Aging Neurosci. 2020;12:150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang Y, Liu XQ, Rall SC Jr, Mahley RW. Apolipoprotein E2 reduces the low density lipoprotein level in transgenic mice by impairing lipoprotein lipase-mediated lipolysis of triglyceride-rich lipoproteins. J Biol Chem. 1998;273:17483–90.

    Article  CAS  PubMed  Google Scholar 

  65. Raichlen DA, Alexander GE. Exercise, APOE genotype, and the evolution of the human lifespan. Trends Neurosci. 2014;37:247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rebeck GW, Kindy M, LaDu MJ. Apolipoprotein E and Alzheimer’s disease: the protective effects of ApoE2 and E3. J Alzheimers Dis. 2002;4:145–54.

    Article  CAS  PubMed  Google Scholar 

  67. Tan ZS, et al. Plasma total cholesterol level as a risk factor for Alzheimer’s disease: the Framingham Study. Arch Intern Med. 2003;163:1053–7.

    Article  CAS  PubMed  Google Scholar 

  68. Wagner M, et al. Evaluation of the concurrent trajectories of cardiometabolic risk factors in the 14 years before dementia. JAMA Psychiat. 2018;75:1033–42.

    Article  Google Scholar 

  69. Proitsi P, et al. Genetic predisposition to increased blood cholesterol and triglyceride lipid levels and risk of Alzheimer’s disease: a Mendelian randomization analysis. PLoS Med. 2014;11:e1001713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Zhang X, et al. Causal association of circulating cholesterol levels with dementia: a Mendelian randomization meta-analysis. Transl Psychiatry. 2020;10:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marrzoq LF, Sharif FA, Abed AA. Relationship between ApoE gene polymorphism and coronary heart disease in Gaza Strip. J Cardiovasc Dis Res. 2011;2:29–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Lee JS, et al. Triglyceride and HDL-C dyslipidemia and risks of coronary heart disease and ischemic stroke by glycemic dysregulation status: the strong heart study. Diabetes Care. 2017;40:529–37.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med (Berl). 2016;94:739–46.

    Article  CAS  Google Scholar 

  74. Austin MA. Triacylglycerol and coronary heart disease. Proc Nutr Soc. 1997;56:667–70.

    Article  CAS  PubMed  Google Scholar 

  75. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81:7B-12B.

    Article  CAS  PubMed  Google Scholar 

  76. Saeed A, et al. Remnant-like particle cholesterol, low-density lipoprotein triglycerides, and incident cardiovascular disease. J Am Coll Cardiol. 2018;72:156–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Grants P01 AG043352, R01 AG047310, R01 AG061853, R01 AG065477, and R01AG070488 from the National Institute on Aging. The funding source did not participate in the writing of the manuscript or the decision to submit the manuscript for publication. See also Supplementary Acknowledgment Text.

Author information

Authors and Affiliations

Authors

Contributions

A.M.K. conceived and designed the experiment and wrote the paper; Y.L. designed the experiment, performed statistical analyses, and wrote the paper; F.F. performed statistical analyses; E.L. wrote the paper.

Corresponding authors

Correspondence to Yury Loika or Alexander M. Kulminski.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loika, Y., Feng, F., Loiko, E. et al. Mediation of the APOE associations with Alzheimer’s and coronary heart diseases through body mass index and lipids. GeroScience 44, 1141–1156 (2022). https://doi.org/10.1007/s11357-021-00458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00458-3

Keywords

Navigation