Skip to main content

Advertisement

Log in

Role of heat shock proteins in aging and chronic inflammatory diseases

  • Review
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Advanced age is associated with a decline in response to stress. This contributes to the establishment of chronic inflammation, one of the hallmarks of aging and age-related disease. Heat shock proteins (HSP) are determinants of life span, and their progressive malfunction leads to age-related pathology. To discuss the function of HSP on age-related chronic inflammation and illness. An updated review of literature and discussion of relevant work on the topic of HSP in normal aging and chronic inflammatory pathology was performed. HSP contribute to inflamm-aging. They also play a key role in age-associated pathology linked to chronic inflammation such as autoimmune disorders, neurological disease, cardiovascular disorder, and cancer. HSP may be targeted for control of their effects related to age and chronic inflammation. Research on HSP functions in age-linked chronic inflammatory disorders provides an opportunity to improve health span and delay age-related chronic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All utilized data is publicly available.

Code availability

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

CVD:

Cardiovascular disease

DAMP:

Danger-associated molecular pattern

HSF1:

Heat shock transcription factor

HSP:

Heat shock proteins

HSPB5:

αB-crystallin

IL:

Interleukin

MS:

Multiple sclerosis

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SASP:

Senescence-associated secretory phenotype

STAT3:

Signal transducer and activator of transcription 3

TLR:

Toll-like receptors

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

References

  1. Kirkwood TB. Understanding the odd science of aging. Cell. 2005;120:437–47. https://doi.org/10.1016/j.cell.2005.01.027.

    Article  CAS  PubMed  Google Scholar 

  2. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300. https://doi.org/10.1093/geronj/11.3.298.

    Article  CAS  PubMed  Google Scholar 

  4. Murshid A, Eguchi T, Calderwood SK. Stress proteins in aging and life span. Int J Hyperthermia. 2013;29:442–7. https://doi.org/10.3109/02656736.2013.798873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rattan SI, Eskildsen-Helmond YE, Beedholm R. Molecular mechanisms of anti-aging hormetic effects of mild heat stress on human cells. Nonlinearity Biol Toxicol Med. 2004;2:105–16. https://doi.org/10.1080/15401420490464376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJ. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets. 2014;18:185–208. https://doi.org/10.1517/14728222.2014.856417.

    Article  CAS  PubMed  Google Scholar 

  7. Kakkar V, Meister-Broekema M, Minoia M, Carra S, Kampinga HH. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech. 2014;7:421–34. https://doi.org/10.1242/dmm.014563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  9. Stahl EC, Brown BN. Cell therapy strategies to combat immunosenescence. Organogenesis. 2015;11:159–72. https://doi.org/10.1080/15476278.2015.1120046.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gomez CR, Boehmer ED, Kovacs EJ. The aging innate immune system. Curr Opin Immunol. 2005;17:457–62. https://doi.org/10.1016/j.coi.2005.07.013.

    Article  CAS  PubMed  Google Scholar 

  11. DeVeale B, Brummel T, Seroude L. Immunity and aging: the enemy within? Aging Cell. 2004;3:195–208.

    Article  CAS  PubMed  Google Scholar 

  12. Pawelec G. Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immun Ageing. 2012;9:15. https://doi.org/10.1186/1742-4933-9-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Montgomery RR, Shaw AC. Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol. 2015;98:937–43. https://doi.org/10.1189/jlb.5MR0315-104R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. G Pawelec Does the human immune system ever really become “senescent”? F1000Res 2017 6 https://doi.org/10.12688/f1000research.11297.1

  15. Krabbe KS, Pedersen M, Bruunsgaard H. Inflammatory mediators in the elderly. Exp Gerontol. 2004;39:687–99.

    Article  CAS  PubMed  Google Scholar 

  16. Piber D, Olmstead R, Cho JH, Witarama T, Perez C, Dietz N, Seeman TE, Breen EC, Cole SW, Irwin MR. Inflammaging: age and systemic, cellular, and nuclear inflammatory biology in older adults. J Gerontol A Biol Sci Med Sci. 2019;74:1716–24. https://doi.org/10.1093/gerona/glz130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation. 2003;107:391–7. https://doi.org/10.1161/01.cir.0000055014.62083.05.

    Article  PubMed  Google Scholar 

  18. Vasto S, Carruba G, Lio D, Colonna-Romano G, Di Bona D, Candore G, Caruso C. Inflammation, ageing and cancer. Mech Ageing Dev. 2009;130:40–5. https://doi.org/10.1016/j.mad.2008.06.003.

    Article  CAS  PubMed  Google Scholar 

  19. Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, Wener MH, Baumgartner KB, Gilliland FD, Sorensen BE, McTiernan A, Ulrich CM. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol. 2009;27:3437–44. https://doi.org/10.1200/JCO.2008.18.9068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. 2011;10:319–29. https://doi.org/10.1016/j.arr.2010.11.002.

    Article  CAS  PubMed  Google Scholar 

  21. Pansarasa O, Pistono C, Davin A, Bordoni M, Mimmi MC, Guaita A, Cereda C. Altered immune system in frailty: genetics and diet may influence inflammation. Ageing Res Rev. 2019;54:100935. https://doi.org/10.1016/j.arr.2019.100935.

    Article  PubMed  Google Scholar 

  22. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2017;8:1960. https://doi.org/10.3389/fimmu.2017.01960.

    Article  CAS  PubMed  Google Scholar 

  23. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d’Adda di Fagagna F, Bernard D, Hernando E, Gil J. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–18. https://doi.org/10.1016/j.cell.2008.03.038.

    Article  CAS  PubMed  Google Scholar 

  24. Elkhattouti A, Hassan M, Gomez CR. Stromal fibroblast in age-related cancer: role in tumorigenesis and potential as novel therapeutic target. Front Oncol. 2015;5:158. https://doi.org/10.3389/fonc.2015.00158.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chesnokova V, Zhou C, Ben-Shlomo A, Zonis S, Tani Y, Ren SG, Melmed S. Growth hormone is a cellular senescence target in pituitary and nonpituitary cells. Proc Natl Acad Sci U S A. 2013;110:E3331-3339. https://doi.org/10.1073/pnas.1310589110.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Charni M, Molchadsky A, Goldstein I, Solomon H, Tal P, Goldfinger N, Yang P, Porat Z, Lozano G, Rotter V. Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation. Cell Death Differ. 2016;23:509–20. https://doi.org/10.1038/cdd.2015.119.

    Article  CAS  PubMed  Google Scholar 

  27. Gomez CR, Nomellini V, Kovacs EJ (2018) Sex hormones and immunosenescence. In: Handbook of Immunosenescence. pp 1–58. https://doi.org/10.1007/978-3-319-64597-1_42-1

  28. Barna J, Csermely P, Vellai T. Roles of heat shock factor 1 beyond the heat shock response. Cell Mol Life Sci. 2018;75:2897–916. https://doi.org/10.1007/s00018-018-2836-6.

    Article  CAS  PubMed  Google Scholar 

  29. Hou Y, Wei H, Luo Y, Liu G. Modulating expression of brain heat shock proteins by estrogen in ovariectomized mice model of aging. Exp Gerontol. 2010;45:323–30. https://doi.org/10.1016/j.exger.2009.10.006.

    Article  CAS  PubMed  Google Scholar 

  30. Morley JF, Morimoto RI. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell. 2004;15:657–64. https://doi.org/10.1091/mbc.e03-07-0532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A. 2009;106:14914–9. https://doi.org/10.1073/pnas.0902882106.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Maniere X, Krisko A, Pellay FX, Di Meglio JM, Hersen P, Matic I. High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans. Exp Gerontol. 2014;60:12–7. https://doi.org/10.1016/j.exger.2014.09.005.

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Tower J. Expression of hsp22 and hsp70 transgenes is partially predictive of drosophila survival under normal and stress conditions. J Gerontol A Biol Sci Med Sci. 2009;64:828–38. https://doi.org/10.1093/gerona/glp054.

    Article  CAS  PubMed  Google Scholar 

  34. King V, Tower J. Aging-specific expression of Drosophila hsp22. Dev Biol. 1999;207:107–18. https://doi.org/10.1006/dbio.1998.9147.

    Article  CAS  PubMed  Google Scholar 

  35. Jurivich DA, Manocha GD, Trivedi R, Lizakowski M, Rakoczy S, Brown-Borg H. Multifactorial attenuation of the murine heat shock response with age. J Gerontol A Biol Sci Med Sci. 2020;25:1846–52. https://doi.org/10.1093/gerona/glz204.

    Article  CAS  Google Scholar 

  36. Colotti C, Cavallini G, Vitale RL, Donati A, Maltinti M, Del Ry S, Bergamini E, Giannessi D. Effects of aging and anti-aging caloric restrictions on carbonyl and heat shock protein levels and expression. Biogerontology. 2005;6:397–406. https://doi.org/10.1007/s10522-005-4906-z.

    Article  CAS  PubMed  Google Scholar 

  37. Schultz C, Dick EJ, Cox AB, Hubbard GB, Braak E, Braak H. Expression of stress proteins alpha B-crystallin, ubiquitin, and hsp27 in pallido-nigral spheroids of aged rhesus monkeys. Neurobiol Aging. 2001;22:677–82. https://doi.org/10.1016/s0197-4580(01)00229-9.

    Article  CAS  PubMed  Google Scholar 

  38. Fonager J, Beedholm R, Clark BF, Rattan SI. Mild stress-induced stimulation of heat-shock protein synthesis and improved functional ability of human fibroblasts undergoing aging in vitro. Exp Gerontol. 2002;37:1223–8. https://doi.org/10.1016/s0531-5565(02)00128-6.

    Article  CAS  PubMed  Google Scholar 

  39. Gomez CR (2019) Hsp60 in cancer immunity: biological basis, diagnostic potential and therapeutic opportunities. In: Heat Shock Protein 60 in Human Diseases and Disorders. Heat Shock Proteins. pp 117–134. https://doi.org/10.1007/978-3-030-23154-5_9

  40. Cappello F, Conway de Macario E, Rappa F, Zummo G, Macario AJL. Immunohistochemistry of human Hsp60 in health and disease: from autoimmunity to cancer. Methods Mol Biol. 2018;1709:293–305. https://doi.org/10.1007/978-1-4939-7477-1_21.

    Article  CAS  PubMed  Google Scholar 

  41. Moudgil KD, Thompson SJ, Geraci F, De Paepe B, Shoenfeld Y. Heat-shock proteins in autoimmunity Autoimmune Dis. 2013;2013:621417. https://doi.org/10.1155/2013/621417.

    Article  CAS  PubMed  Google Scholar 

  42. Martinez de Toda I, De la Fuente M. The role of Hsp70 in oxi-inflamm-aging and its use as a potential biomarker of lifespan. Biogerontology. 2015; 16:709-721. https://doi.org/10.1007/s10522-015-9607-7

  43. Matzinger P. An innate sense of danger. Semin Immunol. 1998;10:399–415. https://doi.org/10.1006/smim.1998.0143.

    Article  CAS  PubMed  Google Scholar 

  44. Broere F, van der Zee R, van Eden W. Heat shock proteins are no DAMPs, rather ‘DAMPERs.’ Nat Rev Immunol. 2011;11:565. https://doi.org/10.1038/nri2873-c1.

    Article  CAS  PubMed  Google Scholar 

  45. van Eden W, Spiering R, Broere F, van der Zee R. A case of mistaken identity: HSPs are no DAMPs but DAMPERs. Cell Stress Chaperones. 2012;17:281–92. https://doi.org/10.1007/s12192-011-0311-5.

    Article  PubMed  Google Scholar 

  46. Giuliano JS Jr, Lahni PM, Wong HR, Wheeler DS. Pediatric sepsis–part V: extracellular heat shock proteins: alarmins for the host immune system. Open Inflamm J. 2011;4:49–60. https://doi.org/10.2174/1875041901104010049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem. 2001;276:31332–9. https://doi.org/10.1074/jbc.M103217200.

    Article  CAS  PubMed  Google Scholar 

  48. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000;6:435–42. https://doi.org/10.1038/74697.

    Article  CAS  PubMed  Google Scholar 

  49. Coelho V, Broere F, Binder RJ, Shoenfeld Y, Moudgil KD. Heat-shock proteins: inflammatory versus regulatory attributes. Cell Stress Chaperones. 2008;13:119–25. https://doi.org/10.1007/s12192-008-0018-4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Galdiero M, de l’Ero GC, Marcatili A. Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun. 1997;65:699–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dubey A, Prajapati KS, Swamy M, Pachauri V. Heat shock proteins: a therapeutic target worth to consider. Vet World. 2015;8:46–51. https://doi.org/10.14202/vetworld.2015.46-51.

    Article  PubMed  PubMed Central  Google Scholar 

  52. De la Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des. 2009;15:3003–26. https://doi.org/10.2174/138161209789058110.

    Article  PubMed  Google Scholar 

  53. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017; 2. https://doi.org/10.1038/sigtrans.2017.23

  54. Schell MT, Spitzer AL, Johnson JA, Lee D, Harris HW. Heat shock inhibits NF-kB activation in a dose- and time-dependent manner. J Surg Res. 2005;129:90–3. https://doi.org/10.1016/j.jss.2005.05.025.

    Article  CAS  PubMed  Google Scholar 

  55. Guzhova IV, Darieva ZA, Melo AR, Margulis BA. Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones. 1997;2:132–9. https://doi.org/10.1379/1466-1268(1997)002%3c0132:msphiw%3e2.3.co;2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang CH, Chou PC, Chung FT, Lin HC, Huang KH, Kuo HP. Heat shock protein70 is implicated in modulating NF-kappaB activation in alveolar macrophages of patients with active pulmonary tuberculosis. Sci Rep. 2017;7:1214. https://doi.org/10.1038/s41598-017-01405-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Charmpilas N, Kyriakakis E, Tavernarakis N. Small heat shock proteins in ageing and age-related diseases. Cell Stress Chaperones. 2017;22:481–92. https://doi.org/10.1007/s12192-016-0761-x.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165–97. https://doi.org/10.1146/annurev.immunol.021908.132620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Willis MS, Patterson C. Hold me tight: role of the heat shock protein family of chaperones in cardiac disease. Circulation. 2010;122:1740–51. https://doi.org/10.1161/CIRCULATIONAHA.110.942250.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Doroudgar S, Glembotski CC. The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart. Trends Mol Med. 2011;17:207–14. https://doi.org/10.1016/j.molmed.2010.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu YS, Zhu B, Luo AL, Yang L, Yang C. The role of cardiokines in heart diseases: beneficial or detrimental? Biomed Res Int. 2018;2018:8207058. https://doi.org/10.1155/2018/8207058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seibert TA, Hibbert B, Chen YX, Rayner K, Simard T, Hu T, Cuerrier CM, Zhao X, de Belleroche J, Chow BJ, Hawken S, Wilson KR, O’Brien ER. Serum heat shock protein 27 levels represent a potential therapeutic target for atherosclerosis: observations from a human cohort and treatment of female mice. J Am Coll Cardiol. 2013;62:1446–54. https://doi.org/10.1016/j.jacc.2013.05.041.

    Article  CAS  PubMed  Google Scholar 

  63. Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C, O’Brien ER. Extracellular release and signaling by heat shock protein 27: role in modifying vascular inflammation. Front Immunol. 2016;7:285. https://doi.org/10.3389/fimmu.2016.00285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kardys I, Rifai N, Meilhac O, Michel JB, Martin-Ventura JL, Buring JE, Libby P, Ridker PM. Plasma concentration of heat shock protein 27 and risk of cardiovascular disease: a prospective, nested case-control study. Clin Chem. 2008;54:139–46. https://doi.org/10.1373/clinchem.2007.094961.

    Article  CAS  PubMed  Google Scholar 

  65. Lepedda AJ, Cigliano A, Cherchi GM, Spirito R, Maggioni M, Carta F, Turrini F, Edelstein C, Scanu AM, Formato M. A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis. 2009;203:112–8. https://doi.org/10.1016/j.atherosclerosis.2008.07.001.

    Article  CAS  PubMed  Google Scholar 

  66. Bruxel MA, Tavares AM, Zavarize Neto LD, de Souza Borges V, Trevisan Schroeder H, Martins Bock P, Lavina Rodrigues MI, Belló-Klein A, Jr Homem de Bittencourt PI. Chronic whole-body heat treatment relieves atherosclerotic lesions, cardiovascular and metabolic abnormalities, and enhances survival time restoring the anti-inflammatory and anti-senescent heat shock response in mice. Biochimie. 2019;156:33–46. https://doi.org/10.1016/j.biochi.2018.09.011.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang X, Wang X, Zhu H, Kranias EG, Tang Y, Peng T, Chang J, Fan GC. Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS ONE. 2012;7:e32765. https://doi.org/10.1371/journal.pone.0032765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Maio A, Vazquez D. Extracellular heat shock proteins: a new location, a new function. Shock. 2013;40:239–46. https://doi.org/10.1097/SHK.0b013e3182a185ab.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jin C, Cleveland JC, Ao L, Li J, Zeng Q, Fullerton DA, Meng X. Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol Med. 2014;20:280–9. https://doi.org/10.2119/molmed.2014.00058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cova I, Markova A, Campini I, Grande G, Mariani C, Pomati S. Worldwide trends in the prevalence of dementia. J Neurol Sci. 2017;379:259–60. https://doi.org/10.1016/j.jns.2017.06.030.

    Article  PubMed  Google Scholar 

  71. Kim JY, Yenari MA. The immune modulating properties of the heat shock proteins after brain injury. Anat Cell Biol. 2013;46:1–7. https://doi.org/10.5115/acb.2013.46.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Banjara M, Ghosh C. Sterile neuroinflammation and strategies for therapeutic intervention. Int J Inflam. 2017;2017:8385961. https://doi.org/10.1155/2017/8385961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rawji KS, Mishra MK, Michaels NJ, Rivest S, Stys PK, Yong VW. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain. 2016;139:653–61. https://doi.org/10.1093/brain/awv395.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Costantini E, D’Angelo C, Reale M. The role of immunosenescence in neurodegenerative diseases. Mediators Inflamm. 2018;2018:6039171. https://doi.org/10.1155/2018/6039171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dukay B, Csoboz B, Toth ME. Heat-shock proteins in neuroinflammation. Front Pharmacol. 2019;10:920. https://doi.org/10.3389/fphar.2019.00920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Crum TS, Gleixner AM, Posimo JM, Mason DM, Broeren MT, Heinemann SD, Wipf P, Brodsky JL, Leak RK. Heat shock protein responses to aging and proteotoxicity in the olfactory bulb. J Neurochem. 2015;133:780–94. https://doi.org/10.1111/jnc.13041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Carnemolla A, Labbadia JP, Lazell H, Neueder A, Moussaoui S, Bates GP. Contesting the dogma of an age-related heat shock response impairment: implications for cardiac-specific age-related disorders. Hum Mol Genet. 2014;23:3641–56. https://doi.org/10.1093/hmg/ddu073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gupte AA, Morris JK, Zhang H, Bomhoff GL, Geiger PC, Stanford JA. Age-related changes in HSP25 expression in basal ganglia and cortex of F344/BN rats. Neurosci Lett. 2010;472:90–3. https://doi.org/10.1016/j.neulet.2010.01.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gleixner AM, Pulugulla SH, Pant DB, Posimo JM, Crum TS, Leak RK. Impact of aging on heat shock protein expression in the substantia nigra and striatum of the female rat. Cell Tissue Res. 2014;357:43–54. https://doi.org/10.1007/s00441-014-1852-6.

    Article  CAS  PubMed  Google Scholar 

  80. Sharp FR, Zhan X, Liu DZ. Heat shock proteins in the brain: role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential. Transl Stroke Res. 2013;4:685–92. https://doi.org/10.1007/s12975-013-0271-4.

    Article  CAS  PubMed  Google Scholar 

  81. Bartelt-Kirbach B, Slowik A, Beyer C, Golenhofen N. Upregulation and phosphorylation of HspB1/Hsp25 and HspB5/alphaB-crystallin after transient middle cerebral artery occlusion in rats. Cell Stress Chaperones. 2017;22:653–63. https://doi.org/10.1007/s12192-017-0794-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Turturici G, Sconzo G, Geraci F. Hsp70 and its molecular role in nervous system diseases. Biochem Res Int. 2011;2011:618127. https://doi.org/10.1155/2011/618127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marino Gammazza A, Bavisotto CC, Barone R, de Macario EC, Macario AJ. Alzheimer’s disease and molecular chaperones: current knowledge and the future of chaperonotherapy. Curr Pharm Des. 2016;22:4040–9. https://doi.org/10.2174/1381612822666160518141437.

    Article  CAS  PubMed  Google Scholar 

  84. Lyon MS, Milligan C. Extracellular heat shock proteins in neurodegenerative diseases: new perspectives. Neurosci Lett. 2019;711:134462. https://doi.org/10.1016/j.neulet.2019.134462.

    Article  CAS  PubMed  Google Scholar 

  85. Liu L, An D, Xu J, Shao B, Li X, Shi J. Ac2-26 induces IKKbeta degradation through chaperone-mediated autophagy via HSPB1 in NCM-treated microglia. Front Mol Neurosci. 2018;11:76. https://doi.org/10.3389/fnmol.2018.00076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Calabrese V, Copani A, Testa D, Ravagna A, Spadaro F, Tendi E, Nicoletti VG, Giuffrida Stella AM. Nitric oxide synthase induction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J Neurosci Res. 2000;60:613–22. https://doi.org/10.1002/(SICI)1097-4547(20000601)60:5%3c613::AID-JNR6%3e3.0.CO;2-8.

    Article  CAS  PubMed  Google Scholar 

  87. Moll NM, Rietsch AM, Thomas S, Ransohoff AJ, Lee JC, Fox R, Chang A, Ransohoff RM, Fisher E. Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann Neurol. 2011;70:764–73. https://doi.org/10.1002/ana.22521.

    Article  PubMed  PubMed Central  Google Scholar 

  88. van Noort JM, Bsibsi M, Gerritsen WH, van der Valk P, Bajramovic JJ, Steinman L, Amor S. Alphab-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol. 2010;69:694–703. https://doi.org/10.1097/NEN.0b013e3181e4939c.

    Article  CAS  PubMed  Google Scholar 

  89. Bsibsi M, Holtman IR, Gerritsen WH, Eggen BJ, Boddeke E, van der Valk P, van Noort JM, Amor S. Alpha-B-crystallin induces an immune-regulatory and antiviral microglial response in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol. 2013;72:970–9. https://doi.org/10.1097/NEN.0b013e3182a776bf.

    Article  CAS  PubMed  Google Scholar 

  90. Quintana FJ, Farez MF, Viglietta V, Iglesias AH, Merbl Y, Izquierdo G, Lucas M, Basso AS, Khoury SJ, Lucchinetti CF, Cohen IR, Weiner HL. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci U S A. 2008;105:18889–94. https://doi.org/10.1073/pnas.0806310105.

    Article  PubMed  PubMed Central  Google Scholar 

  91. de Graeff-Meeder ER, van Eden W, Rijkers GT, Prakken BJ, Kuis W, Voorhorst-Ogink MM, van der Zee R, Schuurman HJ, Helders PJ, Zegers BJ. Juvenile chronic arthritis: T cell reactivity to human HSP60 in patients with a favorable course of arthritis. J Clin Invest. 1995;95:934–40. https://doi.org/10.1172/JCI117801.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Calabrese V, Bates TE, Stella AM. NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res. 2000;25:1315–41. https://doi.org/10.1023/a:1007604414773.

    Article  CAS  PubMed  Google Scholar 

  93. Calderwood SK, Gong J, Murshid A. Extracellular HSPs: the complicated roles of extracellular HSPs in immunity. Front Immunol. 2016;7:159. https://doi.org/10.3389/fimmu.2016.00159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van Eden W, Jansen MAA, Ludwig I, van Kooten P, van der Zee R, Broere F. The enigma of heat shock proteins in immune tolerance. Front Immunol. 2017;8:1599. https://doi.org/10.3389/fimmu.2017.01599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van Eden W. Immune tolerance therapies for autoimmune diseases based on heat shock protein T-cell epitopes. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2018; 373. https://doi.org/10.1098/rstb.2016.0531

  96. Landstein D, Ulmansky R, Naparstek Y. HSP60: a double edge sword in autoimmunity. Oncotarget. 2015;6:32299–300. https://doi.org/10.18632/oncotarget.5869.

    Article  PubMed  PubMed Central  Google Scholar 

  97. van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev. 2005;5:318–30. https://doi.org/10.1038/nri1593.

    Article  CAS  Google Scholar 

  98. Zonneveld-Huijssoon E, Albani S, Prakken BJ, van Wijk F. Heat shock protein bystander antigens for peptide immunotherapy in autoimmune disease. Clin Exp Immunol. 2013;171:20–9. https://doi.org/10.1111/j.1365-2249.2012.04627.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev. 2002;2:185–94. https://doi.org/10.1038/nri749.

    Article  CAS  Google Scholar 

  100. Edkins AL, Price JT, Pockley AG, Blatch GL. Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2018; 373. https://doi.org/10.1098/rstb.2016.0521

  101. Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14:183–93. https://doi.org/10.1016/S1474-4422(14)70256-X.

    Article  CAS  PubMed  Google Scholar 

  102. Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14:630–42. https://doi.org/10.1038/nrm3658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saile B, Eisenbach C, Dudas J, El-Armouche H, Ramadori G. Interferon-gamma acts proapoptotic on hepatic stellate cells (HSC) and abrogates the antiapoptotic effect of interferon-alpha by an HSP70-dependant pathway. Eur J Cell Biol. 2004;83:469–76. https://doi.org/10.1078/0171-9335-00409.

    Article  CAS  PubMed  Google Scholar 

  104. Wieten L, Berlo SE, Ten Brink CB, van Kooten PJ, Singh M, van der Zee R, Glant TT, Broere F, van Eden W. IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis. PLoS ONE. 2009;4:e4186. https://doi.org/10.1371/journal.pone.0004186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. van Herwijnen MJ, Wieten L, van der Zee R, van Kooten PJ, Wagenaar-Hilbers JP, Hoek A, den Braber I, Anderton SM, Singh M, Meiring HD, van Els CA, van Eden W, Broere F. Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proc Natl Acad Sci U S A. 2012;109:14134–9. https://doi.org/10.1073/pnas.1206803109.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tukaj S, Kaminski M. Heat shock proteins in the therapy of autoimmune diseases: too simple to be true? Cell Stress Chaperones. 2019;24:475–9. https://doi.org/10.1007/s12192-019-01000-3.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Stocki P, Dickinson AM. The immunosuppressive activity of heat shock protein 70. Autoimmune Dis. 2012;2012:617213. https://doi.org/10.1155/2012/617213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Borges TJ, Wieten L, van Herwijnen MJ, Broere F, van der Zee R, Bonorino C, van Eden W. The anti-inflammatory mechanisms of Hsp70. Front Immunol. 2012;3:95. https://doi.org/10.3389/fimmu.2012.00095.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lorenzo N, Altruda F, Silengo L, Del Carmen DM. APL-1, an altered peptide ligand derived from heat-shock protein, alone or combined with methotrexate attenuates murine collagen-induced arthritis. Clin Exp Med. 2017;17:209–16. https://doi.org/10.1007/s10238-016-0412-7.

    Article  CAS  PubMed  Google Scholar 

  110. van Halteren AG, Mosselman B, Roep BO, van Eden W, Cooke A, Kraal G, Wauben MH. T cell reactivity to heat shock protein 60 in diabetes-susceptible and genetically protected nonobese diabetic mice is associated with a protective cytokine profile. J Immunol. 2000;165:5544–51. https://doi.org/10.4049/jimmunol.165.10.5544.

    Article  PubMed  Google Scholar 

  111. Barbera A, Lorenzo N, van Kooten P, van Roon J, de Jager W, Prada D, Gomez J, Padron G, van Eden W, Broere F, Del Carmen DM. APL1, an altered peptide ligand derived from human heat-shock protein 60, increases the frequency of Tregs and its suppressive capacity against antigen responding effector CD4 + T cells from rheumatoid arthritis patients. Cell Stress Chaperones. 2016;21:735–44. https://doi.org/10.1007/s12192-016-0698-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mandal K, Jahangiri M, Xu Q. Autoimmunity to heat shock proteins in atherosclerosis. Autoimmun Rev. 2004;3:31–7. https://doi.org/10.1016/S1568-9972(03)00088-0.

    Article  CAS  PubMed  Google Scholar 

  113. Nagele EP, Han M, Acharya NK, DeMarshall C, Kosciuk MC, Nagele RG. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS ONE. 2013;8:e60726. https://doi.org/10.1371/journal.pone.0060726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Manoussakis MN, Tzioufas AG, Silis MP, Pange PJ, Goudevenos J, Moutsopoulos HM. High prevalence of anti-cardiolipin and other autoantibodies in a healthy elderly population. Clin Exp Immunol. 1987;69:557–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pockley AG, Shepherd J, Corton JM. Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest. 1998;27:367–77. https://doi.org/10.3109/08820139809022710.

    Article  CAS  PubMed  Google Scholar 

  116. Pockley AG, Bulmer J, Hanks BM, Wright BH. Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones. 1999;4:29–35. https://doi.org/10.1054/csac.1998.0121.

    Article  CAS  PubMed  Google Scholar 

  117. Rea IM, McNerlan S, Pockley AG. Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontol. 2001;36:341–52. https://doi.org/10.1016/s0531-5565(00)00215-1.

    Article  CAS  PubMed  Google Scholar 

  118. Cappello F, Conway de Macario E, Marino Gammazza A, Bonaventura G, Carini F, Czarnecka AM, Farina F, Zummo G, Macario AJ. Hsp60 and human aging: Les liaisons dangereuses. Front Biosci (Landmark Ed). 2013;18:626–37. https://doi.org/10.2741/4126.

    Article  CAS  Google Scholar 

  119. Ulmansky R, Landstein D, Moallem E, Loeb V, Levin A, Meyuhas R, Katzavian G, Yair S, Naparstek Y. A humanized monoclonal antibody against heat shock protein 60 suppresses murine arthritis and colitis and skews the cytokine balance toward an anti-inflammatory response. J Immunol. 2015;194:5103–9. https://doi.org/10.4049/jimmunol.1500023.

    Article  CAS  PubMed  Google Scholar 

  120. Mantej J, Polasik K, Piotrowska E, Tukaj S. Autoantibodies to heat shock proteins 60, 70, and 90 in patients with rheumatoid arthritis. Cell Stress Chaperones. 2019;24:283–7. https://doi.org/10.1007/s12192-018-0951-9.

    Article  CAS  PubMed  Google Scholar 

  121. Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic instruction of immunity. Cell. 2017;169:570–86. https://doi.org/10.1016/j.cell.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018;15:366–81. https://doi.org/10.1038/s41571-018-0007-1.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34. https://doi.org/10.1038/nm.4409.

    Article  CAS  PubMed  Google Scholar 

  124. Schiavoni G, Gabriele L, Mattei F. The tumor microenvironment: a pitch for multiple players. Front Oncol. 2013;3:90. https://doi.org/10.3389/fonc.2013.00090.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating secreted components of tumor microenvironment: a masterstroke in tumor therapeutics. Cancer Biol Ther. 2018;19:3–12. https://doi.org/10.1080/15384047.2017.1394538.

    Article  CAS  PubMed  Google Scholar 

  126. Arendt LM, Rudnick JA, Keller PJ, Kuperwasser C. Stroma in breast development and disease. Semin Cell Dev Biol. 2010;21:11–8. https://doi.org/10.1016/j.semcdb.2009.10.003.

    Article  CAS  PubMed  Google Scholar 

  127. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat shock proteins and cancer. Trends Pharmacol Sci. 2017;38:226–56. https://doi.org/10.1016/j.tips.2016.11.009.

    Article  CAS  PubMed  Google Scholar 

  128. Chatterjee S, Burns TF. Targeting heat shock proteins in cancer: a promising therapeutic approach. International journal of molecular sciences. 2017; 18. https://doi.org/10.3390/ijms18091978

  129. Beyene DA, Naab TJ, Kanarek NF, Apprey V, Esnakula A, Khan FA, Blackman MR, Brown CA, Hudson TS. Differential expression of Annexin 2, SPINK1, and Hsp60 predict progression of prostate cancer through bifurcated WHO Gleason score categories in African American men. Prostate. 2018;78:801–11. https://doi.org/10.1002/pros.23537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fanelli MA, Cuello Carrion FD, Dekker J, Schoemaker J, Ciocca DR. Serological detection of heat shock protein hsp27 in normal and breast cancer patients. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1998;7:791–5.

    CAS  Google Scholar 

  131. Banerjee S, Lin CF, Skinner KA, Schiffhauer LM, Peacock J, Hicks DG, Redmond EM, Morrow D, Huston A, Shayne M, Langstein HN, Miller-Graziano CL, Strickland J, O’Donoghue L, De AK. Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Can Res. 2011;71:318–27. https://doi.org/10.1158/0008-5472.CAN-10-1778.

    Article  CAS  Google Scholar 

  132. Feng JT, Liu YK, Song HY, Dai Z, Qin LX, Almofti MR, Fang CY, Lu HJ, Yang PY, Tang ZY. Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics. 2005;5:4581–8. https://doi.org/10.1002/pmic.200401309.

    Article  CAS  PubMed  Google Scholar 

  133. Huang Q, Ye J, Huang Q, Chen W, Wang L, Lin W, Lin J, Lin X. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma. Clin Chem Lab Med. 2010;48:263–9. https://doi.org/10.1515/CCLM.2010.043.

    Article  CAS  PubMed  Google Scholar 

  134. Thuringer D, Berthenet K, Cronier L, Solary E, Garrido C. Primary tumor- and metastasis-derived colon cancer cells differently modulate connexin expression and function in human capillary endothelial cells. Oncotarget. 2015;6:28800–15. https://doi.org/10.18632/oncotarget.4894.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Melle C, Ernst G, Escher N, Hartmann D, Schimmel B, Bleul A, Thieme H, Kaufmann R, Felix K, Friess HM, Settmacher U, Hommann M, Richter KK, Daffner W, Taubig H, Manger T, Claussen U, von Eggeling F. Protein profiling of microdissected pancreas carcinoma and identification of HSP27 as a potential serum marker. Clin Chem. 2007;53:629–35. https://doi.org/10.1373/clinchem.2006.079194.

    Article  CAS  PubMed  Google Scholar 

  136. Liao WC, Wu MS, Wang HP, Tien YW, Lin JT. Serum heat shock protein 27 is increased in chronic pancreatitis and pancreatic carcinoma. Pancreas. 2009;38:422–6. https://doi.org/10.1097/MPA.0b013e318198281d.

    Article  CAS  PubMed  Google Scholar 

  137. Workman P, Burrows F, Neckers L, Rosen N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci. 2007;1113:202–16. https://doi.org/10.1196/annals.1391.012.

    Article  CAS  PubMed  Google Scholar 

  138. Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem. 2003;278:41173–81. https://doi.org/10.1074/jbc.M302644200.

    Article  CAS  PubMed  Google Scholar 

  139. Beere HM, Green DR. Stress management–heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol. 2001;11:6–10. https://doi.org/10.1016/s0962-8924(00)01874-2.

    Article  CAS  PubMed  Google Scholar 

  140. Ghosh JC, Dohi T, Kang BH, Altieri DC. Hsp60 regulation of tumor cell apoptosis. J Biol Chem. 2008;283:5188–94. https://doi.org/10.1074/jbc.M705904200.

    Article  CAS  PubMed  Google Scholar 

  141. Chaiwatanasirikul KA, Sala A. The tumour-suppressive function of CLU is explained by its localisation and interaction with HSP60. Cell Death Dis. 2011;2:e219. https://doi.org/10.1038/cddis.2011.99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhou C, Sun H, Zheng C, Gao J, Fu Q, Hu N, Shao X, Zhou Y, Xiong J, Nie K, Zhou H, Shen L, Fang H, Lyu J. Oncogenic HSP60 regulates mitochondrial oxidative phosphorylation to support Erk1/2 activation during pancreatic cancer cell growth. Cell Death Dis. 2018;9:161. https://doi.org/10.1038/s41419-017-0196-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chun JN, Choi B, Lee KW, Lee DJ, Kang DH, Lee JY, Song IS, Kim HI, Lee SH, Kim HS, Lee NK, Lee SY, Lee KJ, Kim J, Kang SW. Cytosolic Hsp60 is involved in the NF-kappaB-dependent survival of cancer cells via IKK regulation. PLoS ONE. 2010;5:e9422. https://doi.org/10.1371/journal.pone.0009422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ruan W, Wang Y, Ma Y, Xing X, Lin J, Cui J, Lai M. HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma. Journal of experimental & clinical cancer research : CR. 2010;29:41. https://doi.org/10.1186/1756-9966-29-41.

    Article  CAS  PubMed Central  Google Scholar 

  145. Tsai YP, Yang MH, Huang CH, Chang SY, Chen PM, Liu CJ, Teng SC, Wu KJ. Interaction between HSP60 and beta-catenin promotes metastasis. Carcinogenesis. 2009;30:1049–57. https://doi.org/10.1093/carcin/bgp087.

    Article  CAS  PubMed  Google Scholar 

  146. Kennedy D, Jager R, Mosser DD, Samali A. Regulation of apoptosis by heat shock proteins. IUBMB Life. 2014;66:327–38. https://doi.org/10.1002/iub.1274.

    Article  CAS  PubMed  Google Scholar 

  147. Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J. 1999;18:2049–56. https://doi.org/10.1093/emboj/18.8.2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  149. Yang HZ, Cui B, Liu HZ, Mi S, Yan J, Yan HM, Hua F, Lin H, Cai WF, Xie WJ, Lv XX, Wang XX, Xin BM, Zhan QM, Hu ZW. Blocking TLR2 activity attenuates pulmonary metastases of tumor. PLoS ONE. 2009;4:e6520. https://doi.org/10.1371/journal.pone.0006520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Quintana FJ, Cohen IR. The HSP60 immune system network. Trends Immunol. 2011;32:89–95. https://doi.org/10.1016/j.it.2010.11.001.

    Article  CAS  PubMed  Google Scholar 

  151. Gammazza AM, Caruso C, David S, Barone R, Rappa F, Campanella C, Conway de Macario E, Cappello F, Macario AJL. HSP60 is a ubiquitous player in the physiological and pathogenic interactions between the chaperoning and the immune systems. Curr Immunol Revs. 2017;13:44–55. https://doi.org/10.2174/1573395513666170412170540.

    Article  CAS  Google Scholar 

  152. Pockley AG, Henderson B. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2018; 373. https://doi.org/10.1098/rstb.2016.0522

  153. Campanella C, Rappa F, Sciume C, Marino Gammazza A, Barone R, Bucchieri F, David S, Curcuru G, Caruso Bavisotto C, Pitruzzella A, Geraci G, Modica G, Farina F, Zummo G, Fais S, Conway de Macario E, Macario AJ, Cappello F. Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer. 2015;121:3230–9. https://doi.org/10.1002/cncr.29499.

    Article  CAS  PubMed  Google Scholar 

  154. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F. Geroscience: linking aging to chronic disease. Cell. 2014;159:709–13. https://doi.org/10.1016/j.cell.2014.10.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sierra F. The emergence of geroscience as an interdisciplinary approach to the enhancement of health span and life span. Cold Spring Harb Perspect Med. 2016;6:a025163. https://doi.org/10.1101/cshperspect.a025163.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Rinaldi B, Corbi G, Boccuti S, Filippelli W, Rengo G, Leosco D, Rossi F, Filippelli A, Ferrara N. Exercise training affects age-induced changes in SOD and heat shock protein expression in rat heart. Exp Gerontol. 2006;41:764–70. https://doi.org/10.1016/j.exger.2006.05.008.

    Article  CAS  PubMed  Google Scholar 

  157. Matai L, Chandra Sarkar G, Chamoli M, Malik Y, Shekhar Kumar S, Rautela U, Ranjan Jana N, Chakraborty K, Mukhopadhyay A. Dietary restriction improves proteostasis and increases life span through endoplasmic reticulum hormesis. Proc Natl Acad Sci U S A. 2019;116:17383–92. https://doi.org/10.1073/pnas.1900055116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jurivich DA, Sistonen RA, Kroes R, Morimoto I. Effect of sodium salicylate on the human heat shock response. Science (New York, NY). 1992;255:1243–5. https://doi.org/10.1126/science.1546322.

    Article  CAS  Google Scholar 

  159. Cascão R, Fonseca JE, Moita LF. Celastrol: a spectrum of treatment opportunities in chronic diseases. Front Med (Lausanne). 2017;4:69. https://doi.org/10.3389/fmed.2017.00069.eCollection2017.

    Article  Google Scholar 

  160. Trivedi R, Jurivich DA. A molecular perspective on age-dependent changes to the heat shock axis. Exp Gerontol. 2020;137:110969. https://doi.org/10.1016/j.exger.2020.110969.

    Article  PubMed  Google Scholar 

  161. Waza M, Adachi H, Katsuno M, Minamiyama M, Sang C, Tanaka F, Inukai A, Doyu M, Sobue G. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med. 2005;11:1088–95. https://doi.org/10.1038/nm1298.

    Article  CAS  PubMed  Google Scholar 

  162. Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet. 2001;10:1307–15. https://doi.org/10.1093/hmg/10.12.1307.

    Article  CAS  PubMed  Google Scholar 

  163. Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol. 2018;19:4–19. https://doi.org/10.1038/nrm.2017.73.

    Article  CAS  PubMed  Google Scholar 

  164. Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B. 2020;10:1904–25. https://doi.org/10.1016/j.apsb.2020.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Saini J, Sharma PK. Clinical, prognostic and therapeutic significance of heat shock proteins in cancer. Curr Drug Targets. 2018;19:1478–90. https://doi.org/10.2174/1389450118666170823121248.

    Article  CAS  PubMed  Google Scholar 

  166. Song YJ, Zhong CB, Wang XB. Heat shock protein 70: a promising therapeutic target for myocardial ischemia-reperfusion injury. J Cell Physiol. 2019;234:1190–207. https://doi.org/10.1002/jcp.27110.

    Article  CAS  PubMed  Google Scholar 

  167. Shao A, Zhou Y, Yao Y, Zhang W, Zhang J, Deng Y. The role and therapeutic potential of heat shock proteins in haemorrhagic stroke. J Cell Mol Med. 2019;23:5846–58. https://doi.org/10.1111/jcmm.14479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhu Z, Reiser G. The small heat shock proteins, especially HspB4 and HspB5 are promising protectants in neurodegenerative diseases. Neurochem Int. 2018;115:69–79. https://doi.org/10.1016/j.neuint.2018.02.006.

    Article  CAS  PubMed  Google Scholar 

  169. Shorter J. Designer protein disaggregases to counter neurodegenerative disease. Curr Opin Genet Dev. 2017;44:1–8. https://doi.org/10.1016/j.gde.2017.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Prakken BJ, Samodal R, Le TD, Giannoni F, Yung GP, Scavulli J, Amox D, Roord S, de Kleer I, Bonnin D, Lanza P, Berry C, Massa M, Billetta R, Albani S. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2004;101:4228–33. https://doi.org/10.1073/pnas.0400061101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Koffeman EC, Genovese M, Amox D, Keogh E, Santana E, Matteson EL, Kavanaugh A, Molitor JA, Schiff MH, Posever JO, Bathon JM, Kivitz AJ, Samodal R, Belardi F, Dennehey C, van den Broek T, van Wijk F, Zhang X, Zieseniss P, Le T, Prakken BA, Cutter GC, Albani S. Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum. 2009;60:3207–16. https://doi.org/10.1002/art.24916.

    Article  CAS  PubMed  Google Scholar 

  172. Huurman VA, van der Meide PE, Duinkerken G, Willemen S, Cohen IR, Elias D, Roep BO. Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin Exp Immunol. 2008;152:488–97. https://doi.org/10.1111/j.1365-2249.2008.03656.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Broadley SA, Vanags D, Williams B, Johnson B, Feeney D, Griffiths L, Shakib S, Brown G, Coulthard A, Mullins P, Kneebone C. Results of a phase IIa clinical trial of an anti-inflammatory molecule, chaperonin 10, in multiple sclerosis. Mult Scler. 2009;15:329–36. https://doi.org/10.1177/1352458508099141.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Drs. Venkat Mannam, Ingrid Espinoza, Amit Reddy, and Ms. Isabella Gomez-Espinoza for valuable discussions and critical reading of the manuscript.

Funding

This study was supported in part by Grant DOD PC094680 and PCF Creativity Award.

Author information

Authors and Affiliations

Authors

Contributions

CRG had the idea for the article, performed the literature search and data analysis, and drafted the work.

Corresponding author

Correspondence to Christian R. Gomez.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The author declares no competing interests.

Disclaimer

Dr. Gomez contributed to this article as an employee of the University of Mississippi Medical Center. The views expressed are his own and do not necessarily represent the views of the National Institutes of Health or the US Government.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, C.R. Role of heat shock proteins in aging and chronic inflammatory diseases. GeroScience 43, 2515–2532 (2021). https://doi.org/10.1007/s11357-021-00394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00394-2

Keywords

Navigation