Skip to main content
Log in

Impact of aging on heat shock protein expression in the substantia nigra and striatum of the female rat

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Many heat shock proteins are chaperones that help refold or degrade misfolded proteins and battle apoptosis. Because of their capacity to protect against protein misfolding, they may help keep diseases of aging at bay. A few reports have examined heat shock proteins (eg. Hsp25, Hsp60, Hsp70, and heat shock cognate 70 or Hsc70) as a function of age in the striatum and nigra. In the present study, we examined the impact of aging on Hsp25, heme oxygenase 1 (HO1 or Hsp32), Hsp40, Hsp60, Hsc70, Hsc/Hsp70 interacting protein (Hip), 78 kDa glucose-regulated protein (GRP78), Hsp90, and ubiquitinated proteins in the nigra and striatum of the female rat by infrared immunoblotting. Female animals are not typically examined in aging studies, adding further to the novelty of our study. Striatal HO1 and Hsp40 were both higher in middle-aged females than in the oldest group. Hsp60 levels were also highest in middle age in the nigra, but were highest in the oldest animals in the striatum. Striatal levels of Hsc70 and the co-chaperone Hip were lower in the oldest group relative to the youngest animals. In contrast, Hsp25 rose with advancing age in both regions. Hsp25 was also colocalized with tyrosine hydroxylase in nigral neurons. Ubiquitinated proteins exhibited a trend to rise in the oldest animals in both regions, and K48 linkage-specific ubiquitin rose significantly from 4–6 to 16–19 months in the striatum. Our study reveals a complex array of age-related changes in heat shock proteins. Furthermore, the age-related rises in some proteins, such as Hsp25, may reflect endogenous adaptations to cellular stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acunzo J, Katsogiannou M, Rocchi P (2012) Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 44:1622–1631

    Article  CAS  PubMed  Google Scholar 

  • Aguilar HN, Zielnik B, Tracey CN, Mitchell BF (2010) Quantification of rapid Myosin regulatory light chain phosphorylation using high-throughput in-cell Western assays: comparison to Western immunoblots. PLoS ONE 5:e9965

    Article  PubMed Central  PubMed  Google Scholar 

  • Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    Article  CAS  PubMed  Google Scholar 

  • Alladi PA, Mahadevan A, Vijayalakshmi K, Muthane U, Shankar SK, Raju TR (2010) Ageing enhances alpha-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians. Neurochem Int 57:530–539

    Article  CAS  PubMed  Google Scholar 

  • Arias E, Cuervo AM (2011) Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 23:184–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aridon P, Geraci F, Turturici G, D’Amelio M, Savettieri G, Sconzo G (2011) Protective role of heat shock proteins in Parkinson’s disease. Neurodegener Dis 8:155–168

    Article  CAS  PubMed  Google Scholar 

  • Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R (2010) Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol 67:41–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes - integrating cell survival and death. J Biosci 32:595–610

    Article  CAS  PubMed  Google Scholar 

  • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868

    Article  CAS  PubMed  Google Scholar 

  • Aztatzi-Santillan E, Nares-Lopez FE, Marquez-Valadez B, Aguilera P, Chanez-Cardenas ME (2010) The protective role of heme oxygenase-1 in cerebral ischemia. Cent Nerv Syst Agents Med Chem 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278, discussion 278-284

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003a) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Braak H, Rub U, Gai WP, Del Tredici K (2003b) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    Article  CAS  PubMed  Google Scholar 

  • Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Bader Lange ML, Sultana R (2010) Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochim Biophys Acta 1801:924–929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calabrese EJ (2010) Hormesis is central to toxicology, pharmacology and risk assessment. Hum Exp Toxicol 29:249–261

    Article  PubMed  Google Scholar 

  • Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Giuffrida Stella AM (2004) Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev 125:325–335

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Mancuso C, Barone E, Calafato S, Bates T, Rizzarelli E, Kostova AT (2009) Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front Biosci (Elite Ed) 14:376–397

    Article  CAS  Google Scholar 

  • Cawley K, Deegan S, Samali A, Gupta S (2011) Assays for detecting the unfolded protein response. Methods Enzymol 490:31–51

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH (2009) Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 35:385–398

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427–446

    Article  CAS  PubMed  Google Scholar 

  • Clare DK, Saibil HR (2013) ATP-driven molecular chaperone machines. Biopolymers 99:846–859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conconi M, Szweda LI, Levine RL, Stadtman ER, Friguet B (1996) Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Arch Biochem Biophys 331:232–240

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining "clean" cells. Autophagy 1:131–140

    Article  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448

    Article  PubMed  Google Scholar 

  • Dennery PA (2000) Regulation and role of heme oxygenase in oxidative injury. Curr Top Cell Regul 36:181–199

    Article  CAS  PubMed  Google Scholar 

  • Desmard M, Boczkowski J, Poderoso J, Motterlini R (2007) Mitochondrial and cellular heme-dependent proteins as targets for the bioactive function of the heme oxygenase/carbon monoxide system. Antioxid Redox Signal 9:2139–2155

    Article  CAS  PubMed  Google Scholar 

  • Di Domenico F, Sultana R, Tiu GF, Scheff NN, Perluigi M, Cini C, Butterfield DA (2010) Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of Alzheimer disease. Brain Res 1333:72–81

    Article  PubMed Central  PubMed  Google Scholar 

  • Dickey C, Kraft C, Jinwal U, Koren J, Johnson A, Anderson L, Lebson L, Lee D, Dickson D, de Silva R, Binder LI, Morgan D, Lewis J (2009) Aging analysis reveals slowed tau turnover and enhanced stress response in a mouse model of tauopathy. Am J Pathol 174:228–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson DW (2009) Neuropathology of non-Alzheimer degenerative disorders. Int J Clin Exp Pathol 3:1–23

    PubMed  Google Scholar 

  • Dickson DW, Wertkin A, Kress Y, Ksiezak-Reding H, Yen SH (1990) Ubiquitin immunoreactive structures in normal human brains. Distribution and developmental aspects. Lab Invest 63:87–99

    CAS  PubMed  Google Scholar 

  • Elsasser S, Finley D (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7:742–749

    Article  CAS  PubMed  Google Scholar 

  • Ewing JF, Maines MD (2006) Regulation and expression of heme oxygenase enzymes in aged-rat brain: age related depression in HO-1 and HO-2 expression and altered stress-response. J Neural Transm 113:439–454

    Article  CAS  PubMed  Google Scholar 

  • Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gabbita SP, Lovell MA, Markesbery WR (1998) Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J Neurochem 71:2034–2040

    Article  CAS  PubMed  Google Scholar 

  • Gorbatyuk MS, Gorbatyuk OS (2013) The molecular chaperone GRP78/BiP as a therapeutic target for neurodegenerative disorders: a mini review. J Genet Syndr Gene Ther 4

  • Goyal VK (1982a) Lipofuscin pigment accumulation in human brain during aging. Exp Gerontol 17:481–487

    Article  CAS  PubMed  Google Scholar 

  • Goyal VK (1982b) Lipofuscin pigment accumulation in the central nervous system of the mouse during aging. Exp Gerontol 17:89–94

    Article  CAS  PubMed  Google Scholar 

  • Grochot-Przeczek A, Dulak J, Jozkowicz A (2012) Haem oxygenase-1: non-canonical roles in physiology and pathology. Clin Sci (Lond) 122:93–103

    Article  CAS  Google Scholar 

  • Gupte AA, Morris JK, Zhang H, Bomhoff GL, Geiger PC, Stanford JA (2010) Age-related changes in HSP25 expression in basal ganglia and cortex of F344/BN rats. Neurosci Lett 472:90–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harman D (2006) Alzheimer’s disease pathogenesis: role of aging. Ann NY Acad Sci 1067:454–460

    Article  CAS  PubMed  Google Scholar 

  • Hohfeld J (1998) Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights. Biol Chem 379:269–274

    CAS  PubMed  Google Scholar 

  • Jazwa A, Cuadrado A (2010) Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr Drug Targets 11:1517–1531

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36, discussion S36-28

    Article  CAS  PubMed  Google Scholar 

  • Jinwal UK, Dickey CA (2011) Cell-based assays for regulators of tau biology. Methods Mol Biol 670:93–108

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14:83–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalia SK, Kalia LV, McLean PJ (2010) Molecular chaperones as rational drug targets for Parkinson’s disease therapeutics. CNS Neurol Disord Drug Targets 9:741–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000a) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75:436–439

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000b) Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev 113:61–70

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Huang FF, Markesbery WR (2000c) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98:149–156

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Gee J, Ding Q (2002) The proteasome in brain aging. Ageing Res Rev 1:279–293

    Article  CAS  PubMed  Google Scholar 

  • Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 279:25497–25502

    Article  CAS  PubMed  Google Scholar 

  • Lanneau D, Wettstein G, Bonniaud P, Garrido C (2010) Heat shock proteins: cell protection through protein triage. ScientificWorldJournal 10:1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Leak RK, Castro SL, Jaumotte JD, Smith AD, Zigmond MJ (2010) Assaying multiple biochemical variables from the same tissue sample. J Neurosci Methods 191:234–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25:294–297

    Article  CAS  PubMed  Google Scholar 

  • Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 35:7497–7504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  CAS  PubMed  Google Scholar 

  • Mathews ST, Plaisance EP, Kim T (2009) Imaging systems for westerns: chemiluminescence vs. infrared detection. Methods Mol Biol 536:499–513

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLean PJ, Kawamata H, Shariff S, Hewett J, Sharma N, Ueda K, Breakefield XO, Hyman BT (2002) TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neurochem 83:846–854

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297:191–194

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179:38–46

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–1438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nature reviews. Neuroscience 6:11–22

    CAS  PubMed  Google Scholar 

  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503

    Article  CAS  PubMed  Google Scholar 

  • Patonay G, Antoine M (1991) Near-infrared fluorogenic labels: new approach to an old problem. Anal Chem 63:321A–327A

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  CAS  PubMed  Google Scholar 

  • Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic Biol Med 28:289–309

    Article  CAS  PubMed  Google Scholar 

  • Sadowski M, Sarcevic B (2010) Mechanisms of mono- and poly-ubiquitination: ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine. Cell Div 5:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nature reviews. Mol Cell Biol 14:630–642

    CAS  Google Scholar 

  • Schipper HM (2000) Heme oxygenase-1: role in brain aging and neurodegeneration. Exp Gerontol 35:821–830

    Article  CAS  PubMed  Google Scholar 

  • Schipper HM (2011) Heme oxygenase-1 in Alzheimer disease: a tribute to Moussa Youdim. J Neural Transm 118:381–387

    Article  CAS  PubMed  Google Scholar 

  • Schipper HM, Liberman A, Stopa EG (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 150:60–68

    Article  CAS  PubMed  Google Scholar 

  • Schipper HM, Bennett DA, Liberman A, Bienias JL, Schneider JA, Kelly J, Arvanitakis Z (2006) Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol Aging 27:252–261

    Article  CAS  PubMed  Google Scholar 

  • Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D (2009) Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 110:469–485

    Article  CAS  PubMed  Google Scholar 

  • Schultz C, Dick EJ, Cox AB, Hubbard GB, Braak E, Braak H (2001) Expression of stress proteins alpha B-crystallin, ubiquitin, and hsp27 in pallido-nigral spheroids of aged rhesus monkeys. Neurobiol Aging 22:677–682

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Allen RG (1990) Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp Gerontol 25:499–522

    Article  CAS  PubMed  Google Scholar 

  • Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L (2008) Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem 106:24–36

    Article  CAS  PubMed  Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thal DR, Del Tredici K, Braak H (2004) Neurodegeneration in normal brain aging and disease. Sci Aging Knowl Environ 2004:pe26

    Article  Google Scholar 

  • Uchida K, Kihara N, Hashimoto K, Nakayama H, Yamaguchi R, Tateyama S (2003) Age-related histological changes in the canine substantia nigra. J Vet Med Sci Jpn Soc Vet Sci 65:179–185

    Article  Google Scholar 

  • Unno K, Asakura H, Shibuya Y, Kaiho M, Okada S, Oku N (2000) Increase in basal level of Hsp70, consisting chiefly of constitutively expressed Hsp70 (Hsc70) in aged rat brain. J Gerontol A 55:B329–B335

    Article  CAS  Google Scholar 

  • Uryu K, Richter-Landsberg C, Welch W, Sun E, Goldbaum O, Norris EH, Pham CT, Yazawa I, Hilburger K, Micsenyi M, Giasson BI, Bonini NM, Lee VM, Trojanowski JQ (2006) Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am J Pathol 168:947–961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci J Virtual Libr 14:5188–5238

    Article  CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Witt SN (2013) Molecular chaperones, alpha-synuclein, and neurodegeneration. Mol Neurobiol 47:552–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu ML, Ho YC, Yet SF (2011) A central role of heme oxygenase-1 in cardiovascular protection. Antioxid Redox Signal 15:1835–1846

    Article  CAS  PubMed  Google Scholar 

  • Zeng BY, Medhurst AD, Jackson M, Rose S, Jenner P (2005) Proteasomal activity in brain differs between species and brain regions and changes with age. Mech Ageing Dev 126:760–766

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Piantadosi CA (1992) Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Invest 90:1193–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, James M, Middleton FA, Davis RL (2005) Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B 137B:5–16

    Article  Google Scholar 

  • Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100:30–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu X, Lee HG, Casadesus G, Avila J, Drew K, Perry G, Smith MA (2005) Oxidative imbalance in Alzheimer’s disease. Mol Neurobiol 31:205–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

R.K.L wrote the manuscript with A.M.G. A.M.G., S.H., D.B.P., and J.M.P. performed the experiments and analyzed the data. We are grateful to Deb Willson, Mary Caruso, and Jackie Farrer for outstanding administrative support and to Dr. John Pollock for use of his confocal microscope. Funding was provided by the Mylan School of Pharmacy at Duquesne University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Leak.

Additional information

A.M. Gleixner and S.H. Pulugulla did equivalent work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleixner, A.M., Pulugulla, S.H., Pant, D.B. et al. Impact of aging on heat shock protein expression in the substantia nigra and striatum of the female rat. Cell Tissue Res 357, 43–54 (2014). https://doi.org/10.1007/s00441-014-1852-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1852-6

Keywords

Navigation