Skip to main content

Advertisement

Log in

APL-1, an altered peptide ligand derived from heat-shock protein, alone or combined with methotrexate attenuates murine collagen-induced arthritis

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Induction of tolerance to autoantigens in vivo is a complex process that involves several mechanisms such as the induction of regulatory T cells and changes in the cytokine and chemokine profiles. This approach represents an attractive alternative for treatment of autoimmune diseases. APL-1 is an altered peptide ligand derived from a novel CD4 + T cell epitope of human heat-shock protein of 60 kDa (HSP60), an autoantigen involved in the pathogenesis of rheumatoid arthritis (RA). We have shown previously that this peptide efficiently inhibited the course of adjuvant-induced arthritis in Lewis rats and induced regulatory T cell (Treg) in ex vivo assay with PBMC isolated from RA patients. This study was undertaken to evaluate the therapeutic effect of APL-1 and its combination with methotrexate (MTX) in collagen-induced arthritis (CIA). CIA was induced in male DBA/1 mice at 8 weeks of age by immunization with chicken collagen. APL, MTX or both were administrated beginning from arthritis onset. Therapeutic effect was evaluated by arthritis and joint pathologic scores. In addition, TNFα and IL-10 in sera were measured by ELISA. Treg induction was assessed by FACS analysis. APL-1 inhibits efficiently the course of arthritis in CIA, similar to MTX. In addition, therapy with APL-1 plus MTX reduced CIA in mice, associated with an increase in Treg. These facts reinforce the therapeutic possibilities of APL-1 as a candidate drug for treatment of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prattm AG, Isaacs JD, Mattey DL. Current concepts in the pathogenesis of early rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2009;23:37–48.

    Article  Google Scholar 

  2. Nell VP, Machold KP, Eberl G, et al. Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology. 2004;43(7):906–14.

    Article  CAS  PubMed  Google Scholar 

  3. Kinder AJ, Hassell AB, Brand J, et al. The treatment of inflammatory arthritis with methotrexate in clinical practice: treatment duration and incidence of adverse drug reactions. Rheumatology. 2005;44(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  4. van Vollenhoven RF. Treatment of rheumatoid arthritis: state of the art. Nat Rev Rheumatol. 2009;5(10):531–41.

    Article  PubMed  Google Scholar 

  5. Castro-Rueda H, Kavanaugh A. Biologic therapy for early rheumatoid arthritis: the latest evidence. Curr Opin Rheumatol. 2008;3:314–9.

    Article  Google Scholar 

  6. Van Vollenhoven RF, Klareskog L. Clinical responses to tumor necrosis factor α antagonists do not show a bimodal distribution: data from the Stockholm tumor necrosis factor α follow up registry. Arthritis Rheum. 2003;48:1500–3.

    Article  PubMed  Google Scholar 

  7. Rubbert-Roth A. Assessing the safety of biologic agents in patients with rheumatoid arthritis. Rheumatology. 2012;51:38–47.

    Article  Google Scholar 

  8. Breedveld FC, Weisman MH, Kavanaugh AF, et al. The PREMIER study: a multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 2006;54:26–37.

    Article  CAS  PubMed  Google Scholar 

  9. Chatenoud L. Immune therapies of autoimmune diseases: Are we approaching a real cure? Curr Opin Immunol. 2006;18(6):710–7.

    Article  CAS  PubMed  Google Scholar 

  10. Myew-Ling T, Pierre M. The role of T cells in rheumatoid arthritis: new subsets and new targets. Curr Opin Rheumatol. 2007;19:284–8.

    Article  Google Scholar 

  11. Liston A, Gray D. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol. 2014;14:154–65.

    Article  CAS  PubMed  Google Scholar 

  12. Lourenço EV, La Cava A. Natural regulatory T cells in autoimmunity. Autoimmunity. 2011;44(1):33–42.

    Article  PubMed  Google Scholar 

  13. van Amelsfort J, Jacobs KMG, Bijlsma JWJ, et al. CD4 + CD25 + regulatory T cells in rheumatoid arthritis. Differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthitis Rheum. 2004;50(9):2775–85.

    Article  Google Scholar 

  14. Nie H, Zheng Y, Li R, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med. 2013;19:322–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J Exp Med. 2004;200(3):277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pasare C, Medzhitov R. Toll pathway dependent blockade of CD4 + CD25 + T cell-mediated suppression by dendritic cells. Science. 2003;299(5609):1033–6.

    Article  CAS  PubMed  Google Scholar 

  17. Valencia X, Stephens G, Goldbach-Mansky R, et al. TNF downmodulates the function of human CD4 + CD25hi T-regulatory cells. Blood. 2006;108(1):253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  CAS  PubMed  Google Scholar 

  19. Aruna BV, Sela M, Mozes E. Suppression of myasthenogenic responses of a T cell line by a dual altered peptide ligand by induction of CD4 + CD25 + regulatory cells. PNAS. 2005;102:10285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao J, Li R, He J, Shi J, et al. Mucosal administration of an altered CII263-272 peptide inhibits collagen-induced arthritis by suppression of Th1/Th17 cells and expansion of regulatory T cells. Rheumatol Int. 2008;29:9–16.

    Article  PubMed  Google Scholar 

  21. Katsara M, Deraos G, Tselios T, Matsoukas J, Apostolopoulos V. Design of novel cyclic altered peptide ligands of myelin basic protein MBP83-99 That modulate immune responses in SJL/J Mice. J Med Chem. 2008;51:3971–8.

    Article  CAS  PubMed  Google Scholar 

  22. De Magistris M. Antigen analog-major complex histocompatibility complexes act as antagonist of the T cell receptor. Cell. 1992;68:625–34.

    Article  PubMed  Google Scholar 

  23. Evavold BD, Allen PM. Separation of IL-4 production from Th cell proliferation by an altered T cell ligand. Science. 1991;252:1308–10.

    Article  CAS  PubMed  Google Scholar 

  24. Paas-Rozner M, Sela M, Mozes E. A dual altered peptide ligand down-regulates myasthenogenic T cell responses by up-regulating. PANAS. 2003;100:6676–81.

    Article  CAS  Google Scholar 

  25. van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol. 2005;5:318–30.

    Article  PubMed  Google Scholar 

  26. Zonneveld-Huijssoon E, Albani S, Prakken BJ, et al. Heat shock protein bystander antigens for peptide immunotherapy in autoimmune disease. Clin Exp Immunol. 2013;171(1):20–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh H, Raghava GPS. ProPred: prediction of HLA-DR binding sites. Bioinformatics. 2001;17:1236–7.

    Article  CAS  PubMed  Google Scholar 

  28. Domínguez MC, Lorenzo N, Barberá A, et al. An altered peptide ligand corresponding to a novel epitope from heat-shock protein 60 induces regulatory T cells and suppresses pathogenic response in an animal model of adjuvant induced arthritis. Autoimmunity. 2011;44(6):471–82.

    Article  Google Scholar 

  29. Barberá A, Lorenzo N, Garrido G, et al. APL-1, an altered peptide ligand derived from human heat-shock protein 60, selectively induces apoptosis in activated CD4 + CD25 + T cells from peripheral blood of rheumatoid arthritis patients. Int Immunopharmacol. 2013;17(4):1075–83.

    Article  PubMed  Google Scholar 

  30. Alberta Paul GA, van Kooten PJS, van Eden W, et al. Highly autoproliferative T cells specific for 60-kDa heat shock protein produce IL-4/IL-10 and IFN-g and are protective in adjuvant arthritis. J Immunol. 2000;165:7270–7.

    Article  Google Scholar 

  31. Luross JA, Williams NA. The genetic and immunopathological processes underlying collagen-induced arthritis. Immunology. 2001;103:407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garrood T, Pitzalis C. Targeting the inflamed synovium: the quest for specificity. Arthritis Rheum. 2006;54:1055–60.

    Article  CAS  PubMed  Google Scholar 

  33. Van Eden W, Van der Zee AGA, Prakken B, et al. Do heat shock proteins control the balance of T cell regulation in inflammatory diseases? Immunol Today. 1998;19:303–7.

    Article  PubMed  Google Scholar 

  34. Alberta P, van Kooten Peter JS, et al. Highly Autoproliferative T cells specific for 60-kDa heat shock protein produce IL-4/IL-10 and IFN γ and are protective in adjuvant arthritis. J Immunol. 2000;165:7270–7.

    Article  Google Scholar 

  35. Yao ZQ, Li R, Li ZG. A triple altered collagen II peptide with consecutive substitutions of TCR contacting residues inhibits collagen-induced arthritis. Ann Rheum Dis. 2007;2007(66):423–4.

    Article  Google Scholar 

  36. Reche PA, Glutting JP, Zhang H, et al. Enhancement to the RANKPEP resource for the prediction of peptide biding to MHC molecules using profiles. Immnigenetics. 2004;56:405–19.

    CAS  Google Scholar 

  37. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-Deficient Mice. J Immunol. 2003;171:6173–7.

    Article  CAS  PubMed  Google Scholar 

  39. Roncarolo MG, Battaglia M, Gregori S. The role of interleukin 10 in the control of autoimmunity. J Autoimmun. 2004;20(4):269–72.

    Article  Google Scholar 

  40. Domínguez MC, Lorenzo N, Barberá A, et al. Therapeutic effect of two altered peptide ligands derived from the human heat shock protein 60 in experimental models of rheumatoid arthritis. Biotecnología Aplicada. 2013;30:153–6.

    Google Scholar 

  41. Scott DL, Kingsley GH. Tumor necrosis factors inhibitors for rheumatoid arthritis. N Engl J M. 2006;355:704–12.

    Article  CAS  Google Scholar 

  42. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344:904–16.

    Google Scholar 

  43. Carpentier I, Coormaert B, Beyaert R. Function and regulation of tumor necrosis factor type 2. Curr Med Chem. 2004;11:2205–12.

    Article  CAS  PubMed  Google Scholar 

  44. Neurath MF, Hilder K, Becker C, et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): mechanism for methotrexate-mediated immunosuppression. Clin Exp Immunol. 1999;115:42–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Montesinos MC, et al. The anti-inflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5′-nucleotidase: findings in a study of ecto-5′-nucleotidase gene-deficient mice. Arthritis Rheum. 2007;56:1440–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria del Carmen Dominguez.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzo, N., Altruda, F., Silengo, L. et al. APL-1, an altered peptide ligand derived from heat-shock protein, alone or combined with methotrexate attenuates murine collagen-induced arthritis. Clin Exp Med 17, 209–216 (2017). https://doi.org/10.1007/s10238-016-0412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-016-0412-7

Keywords

Navigation