Skip to main content

Advertisement

Log in

Data-driven soft computing modeling of groundwater quality parameters in southeast Nigeria: comparing the performances of different algorithms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In recent decades, the simulation and modeling of water quality parameters have been useful for monitoring and assessment of the quality of water resources. Moreover, the use of multiple modeling techniques, rather than a standalone model, tends to provide more robust and reliable insights. In this present paper, several soft computing techniques were integrated and compared for the modeling of groundwater quality parameters (pH, electrical conductivity (EC), total dissolved solids (TDS), total hardness (TH), modified heavy metal index (MHMI), pollution load index (PLI), and synthetic pollution index (SPI)) in Ojoto area, SE Nigeria. Standard methods were employed in the physicochemical analysis of the groundwater resources. It was found that anthropogenic and non-anthropogenic activities influenced the concentrations of the water quality parameters. The PLI, MHMI, and SPI revealed that about 20–25% of the groundwater samples are unsuitable for drinking. Simple linear regression indicated that strong agreements exist between the results of the water quality indices. Principal component and Varimax-rotated factor analyses showed that Pb, Ni, and Zn influenced the judgment of the water quality indices most. Q-mode hierarchical and K-means clustering  algorithms grouped the water samples based on their pH, EC, TDS, TH, MHMI, PLI, and SPI values. Multiple linear regression (MLR) and artificial neural network (ANN) algorithms were used for the simulation and prediction of  the pH, EC, TDS, TH, PLI, MHMI, and SPI. The MLR performed better than the ANN model in predicting EC, TH, and TDS. Nevertheless, the ANN model predicted the pH better than the MLR model. Meanwhile, both MLR and ANN performed equally in the prediction of PLI, MHMI, and SPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akpoborie IA, Nfor BN, Etobro AAI, Odagwe S (2011) Aspects of the geology and groundwater conditions of Asaba, Nigeria. Arch Appl Sci Res 3(2):537–550

    Google Scholar 

  • Alizamir M, Sobhanardakani S (2016) Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach. J Adv Environ Health Res 4(2):68–77

    CAS  Google Scholar 

  • Alizamir M, Sobhanardakani S (2017a) A comparison of performance of artificial neural networks for prediction of heavy metals concentration in groundwater resources of Toyserkan Plain. Avicenna J Environ Health Eng 4(1):e11792

    Article  CAS  Google Scholar 

  • Alizamir M, Sobhanardakani S (2017b) Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm. Environ Health Eng Manag J 4(4):225–231

    Article  CAS  Google Scholar 

  • Alizamir M, Sobhanardakani S (2018) An artificial neural network - particle swarm optimization (ANN- PSO) approach to predict heavy metals contamination in groundwater resources. Jundishapur J Health Sci. 10(2):e67544. https://doi.org/10.5812/jjhs.67544

    Article  Google Scholar 

  • Alizamir M, Sobhanardakani S, Hasanalipour Shahrabadi A (2019) Prediction of heavy metals concentration in the groundwater resources in Razan Plain: extreme learning machine vs. artificial neural network and multivariate adaptive regression spline. Ann Mil Health Sci Res 17(4):e98554. https://doi.org/10.5812/amh.98554

    Article  Google Scholar 

  • Alizamir M, Sobhanardakani S, Taghavi L (2017) Modeling of groundwater resources heavy metals concentration using soft computing methods: application of different types of artificial neural networks. J Chem Health Risks 7(3):207–216

    CAS  Google Scholar 

  • Alsubih M, El Morabet R, Khan RA, Khan NA, Khan MU, Ahmed S, Qadir A, Changani F (2021) Occurrence and health risk assessment of arsenic and heavy metals in groundwater of three industrial areas in Delhi, India. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-15062-3

  • Amiri V, Rezaei M, Sohrabi N (2014) Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran. Environ Earth Sci 72(9):3479–3490

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington DC

    Google Scholar 

  • Arnedo-Pena A, Bellido-Blasco J, Puig-Barbera J, Artero-Civera A, Campos-Cruañes JB, Pac-Sa MR, Villamarín-Vázquez JL, Felis-Dauder C (2007) Domestic water hardness and prevalence of atopic eczema in Castellon (Spain) School Children. Salud Pública De México 492(4):295–301

    Article  Google Scholar 

  • Arua I (1986) Paleoenvironment of Eocene deposits in the Afikpo syncline, southern Nigeria. J Afr Earth Sci 5:279–284

    Google Scholar 

  • Asadollahfardi G, Taklify A, Ghanbari A (2012) Application of artificial neural network to predict TDS in Talkheh Rud River. J Irrig Drain Eng 138(4):363–370

    Article  Google Scholar 

  • Avci H, Dokuz UE, Avci AS (2018) Hydrochemistry and groundwater quality in a semiarid calcareous area: an evaluation of major ion chemistry using a stoichiometric approach. Environ Monit Assess 190:641

    Article  CAS  Google Scholar 

  • Bader J (1973) Ground-water contamination. U. S. Geological Survey, Washington DC, The United State of America and Puerto Rica, p 103

    Google Scholar 

  • Bai J, Cui B, Chen B, Zhang K, Deng W, Gao H, Xiao R (2011) Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol Model 222:301–306

    Article  CAS  Google Scholar 

  • Ballentine R (1972) Subsurface pollution problems in the United States. Tech. Studies Rept. TS-00-72-02. U. S. Environmental Protection Agency, Washington DC, p 29

    Google Scholar 

  • Barzegar R, Asghari Moghaddam A, Adamowski J, Ozga-Zielinski B (2017) Multi-step water quality forecasting using a boosting ensemble. Stoch Env Res Risk Assess. https://doi.org/10.1007/s00477-017-1394-z

  • Barzegar R, Moghaddam AA, Adamowski J, Nazemi AM (2019) Assessing the potential origins and human health risks of trace elements in groundwater: a case study in the Khoy plain, Iran. Environ Geochem Health 41(2):981–1002. https://doi.org/10.1007/s10653-018-0194-9

    Article  CAS  Google Scholar 

  • Başyiğit B, Tekin-Özan S (2013) Concentrations of some heavy metals in water, sediment, and tissues of pikeperch (Sander lucioperca) from Karataş Lake related to physicochemical parameters, fish size, and seasons. Pol J Environ Stud 22(3):633–644

    Google Scholar 

  • Belkhiri L, Mouni L, Tiri A, Narany TS, Nouibet R (2018) Spatial analysis of groundwater quality using self-organizing maps. Groundw Sustain Dev 7:121–132

    Article  Google Scholar 

  • Chatterjee S, Sarkar S, Dey N, Ashour AS, Sen S, Hassanien AE (2017) Application of cuckoo search in water quality prediction using artificial neural network. Int J Comput Intell Stud 6(2–3):229–244

    Google Scholar 

  • Chen H, Xu L, Ai W, Lin B, Feng Q, Cai K (2020) Kernel functions embedded in support vector machine learning models for rapid water pollution assessment via near infrared spectroscopy. Sci Total Environ 714:136765. https://doi.org/10.1016/j.scitotenv.2020.136765

    Article  CAS  Google Scholar 

  • Chen T, Zhang H, Sun C, Li H, Gao Y (2018) Multivariate statistical approaches to identify the major factors governing groundwater quality. Appl Water Sci. https://doi.org/10.1007/s13201-018-0837-0

  • Chen W, Liu W (2015) Water quality modeling in reservoirs using multivariate linear regression and two neural network models. Adv Artif Neural Syst. https://doi.org/10.1155/2015/521721

  • Egbueri JC (2018) Assessment of the quality of groundwaters proximal to dumpsites in Awka and Nnewi metropolises: a comparative approach. Int J Energy Water Res. https://doi.org/10.1007/s42108-018-0004-1

  • Egbueri JC (2019a) Evaluation and characterization of the groundwater quality and hydrogeochemistry of Ogbaru farming district in southeastern Nigeria. SN Appl Sci. https://doi.org/10.1007/s42452-019-0853-1

  • Egbueri JC (2019b) Water quality appraisal of selected farm provinces using integrated hydrogeochemical, multivariate statistical, and microbiological technique. Model Earth Syst Environ 5(3):997–1013. https://doi.org/10.1007/s40808-019-00585-z

    Article  Google Scholar 

  • Egbueri JC (2020) Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): a case study. Groundw Sustain Dev 10:100292. https://doi.org/10.1016/j.gsd.2019.100292

    Article  Google Scholar 

  • Egbueri JC (2021) Prediction modeling of potentially toxic elements’ hydrogeopollution using an integrated Q-mode HCs and ANNs machine learning approach in SE Nigeria. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13678-z

  • Egbueri JC, Ezugwu CK, Ameh PD, Unigwe CO, Ayejoto DA (2020) Appraising drinking water quality in Ikem rural area (Nigeria) based on chemometrics and multiple indexical methods. Environ Monit Assess 192(5):308. https://doi.org/10.1007/s10661-020-08277-3

    Article  CAS  Google Scholar 

  • Egbueri JC, Ezugwu CK, Unigwe CO, Onwuka OS, Onyemesili OC, Mgbenu CN (2021a) Multidimensional analysis of the contamination status, corrosivity and hydrogeochemistry of groundwater from parts of the Anambra Basin, Nigeria. Anal Lett 54(13):2126–2156. https://doi.org/10.1080/00032719.2020.1843049

    Article  CAS  Google Scholar 

  • Egbueri JC, Mgbenu CN, Chukwu CN (2019) Investigating the hydrogeochemical processes and quality of water resources in Ojoto and environs using integrated classical methods. Model Earth Syst Environ 5(4):1443–1461. https://doi.org/10.1007/s40808-019-00613-y

    Article  Google Scholar 

  • Egbueri JC, Mgbenu CN, Digwo DC, Nnyigide CS (2021c) A multi-criteria water quality evaluation for human consumption, irrigation and industrial purposes in Umunya area, southeastern Nigeria. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1907360

  • Egbueri JC, Unigwe CO (2019) An integrated indexical investigation of selected heavy metals in drinking water resources from a coastal plain aquifer in Nigeria. SN Appl Sci. https://doi.org/10.1007/s42452-019-1489-x

  • Egbueri JC, Unigwe CO, Omeka ME, Ayejoto DA (2021b) Urban groundwater quality assessment using pollution indicators and multivariate statistical tools: a case study in southeast Nigeria. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1907359

  • Elinder C, Iron I, Friberg L, Nordberg G, Vouk V (1986) Handbook on the technology of metals. Elsevier, Amsterdam, pp 276–297

    Google Scholar 

  • El-Sayed SA, Moussa EMM, El-Sabagh MEI (2017) Evaluation of heavy metal content in Qaroun Lake, El-Fayoum, Egypt. Part I: Bottom sediments. J Radiat Res Appl Sci 8:276–285

    Article  Google Scholar 

  • Enyigwe MT, Onwuka OS, Egbueri JC (2021) Geochemical distribution, statistical and health risk assessment of toxic elements in groundwater from a typical mining district in Nigeria. Environ Forensics. https://doi.org/10.1080/15275922.2021.1907822

  • Gad M, Abou El-Safa MM, Farouk M, Hussein H, Alnemari AM, Elsayed S, Khalifa MM, Moghanm FS, Eid EM, Saleh AH (2021) Integration of water quality indices and multivariate modeling for assessing surface water quality in Qaroun Lake, Egypt. Water 13:2258. https://doi.org/10.3390/w13162258

    Article  CAS  Google Scholar 

  • Garg RK, Rao RJ, Uchchariya D, Shukla G, Saksena DN (2010) Seasonal variations in water quality and major threats to Ramsagar reservoir, India, Afr J Environ Sci Technol 4(2)

  • Gaya MS, Abba SI, Abdu AM, Tukur AI, Saleh AM, Esmaili P, Wahab NA (2020) Estimation of water quality index using artificial intelligence approaches and multi-linear regression. IAES Int. J Artif Intell 9(1):126–134. https://doi.org/10.11591/ijai.v9.i1.pp126-134

    Article  Google Scholar 

  • Ghobadi A, Cheraghi M, Sobhanardakani S (2021) Groundwater quality modeling using a novel hybrid data-intelligence model based on gray wolf optimization algorithm and multi-layer perceptron artificial neural network: a case study in Asadabad Plain, Hamedan. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-16300-4

  • Goyal RR, Patel H, Mane SJ (2015) Artificial neural network: an effective tool for predicting water quality for Kalyan-Dombivali municipal corporation. Int J Sci Res 4(6):2863–2866

    Google Scholar 

  • Håkanson L (1980) An ecological risk index for aquatic. Pollution control: a sedimentological approach. Water Research 14:975–1001

    Article  Google Scholar 

  • Hameed M, Sharqi SS, Yaseen ZM, Afan HA, Hussain A, Elshafie A (2016) Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region. Malaysia. Neural Comput Applic 28(S1):1–13. https://doi.org/10.1007/s00521-016-2404-7

    Article  Google Scholar 

  • Hanfi MY, Mostafa MYA, Zhukovsky MV (2020) Heavy metal contamination in urban surface sediments: sources, distribution, contamination control, and remediation. Environ Monit Assess 192(1):32

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP, Kaushik A (2008) Suitability assessment of groundwater for drinking, irrigation and industrial use in some North Indian villages. Environ Monit Assess 145:397–406. https://doi.org/10.1007/s10661-007-0048-x

    Article  CAS  Google Scholar 

  • Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu AX, Kazakis N (2018) Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ 621:1124–1141. https://doi.org/10.1016/j.scitotenv.2017.10.114

    Article  CAS  Google Scholar 

  • Idriss IEA, Abdel-Azim M, Karar KI, Osman S, Idris AM (2020) Isotopic and chemical facies for assessing the shallow water table aquifer quality in Goly Region, White Nile State, Sudan: focusing on nitrate source apportionment and human health risk. Toxin Rev:1–13. https://doi.org/10.1080/15569543.2020.1775255

  • Kadam A, Wagh V, Jacobs J, Patil S, Pawar N, Umrikar B, Sankhua R, Kumar S (2021) Integrated approach for the evaluation of groundwater quality through hydro geochemistry and human health risk from Shivganga river basin. Environ Sci Pollut Res, Pune, Maharashtra, India. https://doi.org/10.1007/s11356-021-15554-2

    Book  Google Scholar 

  • Kadam AK, Wagh VM, Muley AA, Umrikar BN, Sankhua RN (2019) Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin. Model Earth Syst Environ, India. https://doi.org/10.1007/s40808-019-00581-3

    Book  Google Scholar 

  • Kargar K, Samadianfard S, Parsa J, Nabipour N, Shamshirband S, Mosavi A, Chau KW (2020) Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms. Eng Applic Comput Fluid Mech 14(1):311–322. https://doi.org/10.1080/19942060.2020.1712260

    Article  Google Scholar 

  • Knepper W (1981) Iron. In: Kirk-Othmer encyclopedia of chemical technology, vol 13. Wiley Interscience, New York, pp 735–753

    Google Scholar 

  • Kogbe CA (1976) Paleographic history of Nigeria from Albian Times. In: Kogbe CA (ed) Geology of Nigeria. Elizabethan Publishers, Lagos

    Google Scholar 

  • Kožíšek F (2003) Health significance of drinking water calcium and magnesium. National Institute of Public Health, Šrobárová, Slovakia

    Google Scholar 

  • Kükrer S, Mutlu E (2019) Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environ Monit Assess 191:71–87

    Article  CAS  Google Scholar 

  • Kumar S, Shirke KD, Pawar NJ (2008) GIS-based colour composites and overlays to delineate heavy metal contamination zones in the shallow alluvial aquifers, Ankaleshwar industrial estate, south Gujarat, India. Environ Geol 54:117–129. https://doi.org/10.1007/s00254-007-0799-2

    Article  CAS  Google Scholar 

  • Li P, Feng W, Xue C, Tian R, Wang S (2017) Spatiotemporal variability of contaminants in lake water and their risks to human health: a case study of the Shahu Lake tourist area, northwest China. Expo Health 9(3):213–225

    Article  CAS  Google Scholar 

  • Li P, Qian H, Wu J (2010) Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, North west China. J Chem 7:209–216

  • Lower S (2007) Hard water and water softening [online] https://www.chem1.com/CQ/hardwater.html. Accessed 30th August 2021

  • Luo D, Guo Q, Wang X (2003) Simulation and prediction of underground water dynamics based on RBF neural network. Acta Geosci Sin 24:475–478

    Google Scholar 

  • Mahmoudi N, Orouji, Fallah-Mehdipour E (2016) Integration of shuffled frog leaping algorithm and support vector regression for prediction of water quality parameters. Water Resour Manage. https://doi.org/10.1007/s11269-016-1280-3

  • Maier HR, Morgan N, Chow CWK (2004) Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environ Model Softw 19(5):485–494. https://doi.org/10.1016/S1364-8152(03)00163-4

    Article  Google Scholar 

  • Maroufpoor S, Jalali M, Nikmehr S, Shiri N, Shiri J, Maroufpoor E (2020) Modeling groundwater quality by using hybrid intelligent and geostatistical methods. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-09188-z

  • Marque S, Jacqmin-Gadda H, Dartigues JF, Commenges D (2003) Cardiovascular mortality and calcium and magnesium in drinking water: an ecological study in elderly people. Eur J Epidemiol 18(4):305–309

    Article  CAS  Google Scholar 

  • Matthess G (1982) The properties of groundwater, vol No. 551.49 M38. Wiley, New York

    Google Scholar 

  • McGowan W (2000) Water processing: residential, commercial, light industrial, 3rd edn. Water Quality Association, Lisle

    Google Scholar 

  • McNally NJ, Williams HC, Phillips DR, Smallman-Raynor M, Lewis S, Venn A, Britton J (1998) Atopic eczema and domestic water hardness. Lancet 352(9127):527–531

    Article  CAS  Google Scholar 

  • McNeil VH, Cox ME (2000) Relationship between conductivity and analysed composition in a large set of natural surface-water samples, Queensland, Australia. Environ Geol 39(12):1325–1333

    Article  CAS  Google Scholar 

  • Meyer C (1973) Polluted ground: some causes, effects, controls, and monitoring. Environmental Protection Agency, Washington, D. C, U.S, p 282

    Google Scholar 

  • Miranda J, Krishnakumar G (2015) Microalgal diversity in relation to the physicochemical parameters of some industrial sites in Mangalore. South India. Environ Monit Assess 187(11):664. https://doi.org/10.1007/s10661-015-4871-1

    Article  CAS  Google Scholar 

  • Miyake Y, Yokoyama T, Yura A, Iki M, Shimizu T (2004) Ecological association of water hardness with prevalence of childhood atopic dermatitis in a Japanese urban area. Environ Res 94(1):33–37

    Article  CAS  Google Scholar 

  • Mohammadpour R, Shaharuddin S, Zakaria NA, Ghani AA, Vakili M, Chan NW (2016) Prediction of water quality index in free surface constructed wetlands. Environ Earth Sci 75:139. https://doi.org/10.1007/s12665-015-4905-6

    Article  CAS  Google Scholar 

  • Mukate S, Panaskar D, Wagh V, Muley A, Jangam C, Pawar R (2017) Impact of anthropogenic inputs on water quality in Chincholi industrial area of Solapur, Maharashtra, India. Groundw Sustain Dev 7:359–371. https://doi.org/10.1016/j.gsd.2017.11.001

    Article  Google Scholar 

  • Mukate S, Wagh V, Panaskar D, Jacobs JA, Sawant A (2019) Development of new integrated water quality index (IWQI) model to evaluate the drinking suitability of water. Ecol Indic 101:348–354

    Article  CAS  Google Scholar 

  • Najafzadeh M, Ghaemi A (2019) Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods. Environ Monit Assess 191:380. https://doi.org/10.1007/s10661-019-7446-8

    Article  CAS  Google Scholar 

  • Nwachukwu SO (1972) The tectonic evolution of the southern portion of the Benue Trough, Nigeria. Geol Mag 109:411–419

    Article  Google Scholar 

  • Nwajide CS (2013) Geology of Nigeria’s sedimentary basins. CSS Press, Lagos

    Google Scholar 

  • Nfor BN, Olobaniyi SB, Ogala JE (2007) Extent and distribution of groundwater resources in parts of Anambra State, Southeastern Nigeria. J Appl Sci Environ Manag 11(2):215–221

  • Obasi PN, Akudinobi BB (2020) Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Appl Water Sci 10(7):1–23

    Article  CAS  Google Scholar 

  • Okoro EI, Egboka BCE, Anike OL, Enekwechi EK (2010b) Evaluation of groundwater potentials in parts of the Escarpment area of southeastern Nigeria. Int J Geomat Geosci 1(3):544–551

    Google Scholar 

  • Okoro EI, Egboka BCE, Onwuemesi AG (2010a) Evaluation of the aquifer characteristics of the Nanka Sand using hydrogeological method in combination with vertical electric sounding (VES). J Appl Sci Environ Manag 14(2):5–9

    Google Scholar 

  • Orouji H, Haddad OB, Fallah-Mehdipour E, Mariño MA (2013) Modeling of water quality parameters using data-driven models. J Environ Eng 139(7):947–957. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000706

    Article  CAS  Google Scholar 

  • Ozel HU, Gemici BT, Gemici E, Ozel HB, Cetin M, Sevik H (2020) Application of artificial neural networks to predict the heavy metal contamination in the Bartin River. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10156-w

  • Pan C, Ng KTW, Fallah B, Richter A (2019) Evaluation of the bias and precision of regression techniques and machine learning approaches in total dissolved solids modeling of an urban aquifer. Environ Sci Pollut Res 26(2):1821–1833. https://doi.org/10.1007/s11356-018-3751-y

    Article  Google Scholar 

  • Papazotos P (2021) Potentially toxic elements in groundwater: a hotspot research topic in environmental science and pollution research. Environ Sci Pollut Res 28(35):47825–47837. https://doi.org/10.1007/s11356-021-15533-7

    Article  CAS  Google Scholar 

  • Papazotos P, Vasileiou E, Perraki M (2019) The synergistic role of agricultural activities in groundwater quality in ultramafic environments: the case of the Psachna basin, central Euboea. Greece. Environ Monit Assess 191(5):317. https://doi.org/10.1007/s10661-019-7430-3

    Article  CAS  Google Scholar 

  • Papazotos P, Vasileiou E, Perraki M (2020) Elevated groundwater concentrations of arsenic and chromium in ultramafic environments controlled by seawater intrusion, the nitrogen cycle, and anthropogenic activities: the case of the Gerania Mountains, NE Peloponnese, Greece. Appl Geochem 121:104697. https://doi.org/10.1016/j.apgeochem.2020.104697

  • Pham QC, Mohammadpour R, Linh NTT, Mohajane M, Pourjasem A, Sammen SS, Anh DT, Nam VT (2020) Application of soft computing to predict water quality in wetland. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10344-8

  • Pisciotta A, Cusimano G, Favara R (2015) Groundwater nitrate risk assessment using intrinsic vulnerability methods: a comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italy. J Geochem Explor 156:89–100

    Article  CAS  Google Scholar 

  • Pocock SJ, Shaper AG, Packham RF (1981) Studies of water quality and cardiovascular disease in the United Kingdom. Sci Total Environ 18:25–34

    Article  CAS  Google Scholar 

  • Pourret O, Bollinger JC, Hursthouse A (2021) Heavy metal: a misused term? Acta Geochim 40:466–471. https://doi.org/10.1007/s11631-021-00468-0

    Article  CAS  Google Scholar 

  • Pourret O, Hursthouse A (2019) It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16224446

  • Proshad R, Zhang D, Idris AM, Islam MS, Kormoker T, Sarker MNI, Khadka S, Sayeed A, Islam M (2021) Comprehensive evaluation of chemical properties and toxic metals in the surface water of Louhajang River. Environ Sci Pollut Res, Bangladesh. https://doi.org/10.1007/s11356-021-14160-6

    Book  Google Scholar 

  • Rahman A, Mondal NC, Tiwari KK (2021) Anthropogenic nitrate in groundwater and its health risks in the view of background concentration in a semi-arid area of Rajasthan. India. Sci Rep 11:9279. https://doi.org/10.1038/s41598-021-88600-1

    Article  CAS  Google Scholar 

  • Reyment RA (1965) Aspects of the geology of Nigeria: the stratigraphy of the cretaceous and Cenozoic deposits. Ibadan University Press, Ibadan

    Google Scholar 

  • Rezaei Raja O, Sobhanardakani S, Cheraghi M (2016) Health risk assessment of citrus contaminated with heavy metals in Hamedan city, potential risk of Al and Cu. Environ Health Eng Manag J 3(3):131–135

    Article  Google Scholar 

  • Roy R, Majumder M (2018a) A quick prediction of hardness from water quality parameters by artificial neural network. Int J Environ Sustain Dev 17(2/3):247–257

    Article  Google Scholar 

  • Roy R, Majumder M (2018b) Empirical modelling of total suspended solids from turbidity by polynomial neural network in north eastern India. Desalin Water Treat 132:75–78

    Article  Google Scholar 

  • Roy R, Majumder M (2019) Assessment of water quality trends in Loktak Lake, Manipur. India. Environ Earth Sci 78:383. https://doi.org/10.1007/s12665-019-8383-0

    Article  Google Scholar 

  • Roy R, Majumder M, Barman RN (2017) Assessment of water quality by RSM and ANP: a case study in Tripura. India. Asian J Water Environ Pollut 14(1):51–58. https://doi.org/10.3233/AJW-170006

    Article  Google Scholar 

  • Rubenowitz E, Axelsson G, Rylander R (1999) Magnesium and calcium in drinking water and death from acute myocardial infarction in women. Epidemiology 10(1):31–36

    Article  CAS  Google Scholar 

  • Rupakheti D, Tripathee L, Kang S, Sharma CM, Paudyal R, Sillanpää M (2017) Assessment of water quality and health risks for toxic trace elements in urban Phewa and remote Gosainkunda lakes. Nepal. Hum Ecol Risk Assess 23:959–973

    Article  CAS  Google Scholar 

  • Saravanakumar K, Kumar RR (2011) Analysis of water quality parameters of groundwater near Ambattur industrial area, Tamil Nadu. India. Indian J Sci Technol 4(5):660–662

    Article  CAS  Google Scholar 

  • Sawyer GN, McCarthy DL (1967) Chemistry of sanitary engineers, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Selvaraj A, Saravanan S, Jennifer JJ (2020) Mamdani fuzzy based decision support system for prediction of groundwater quality: an application of soft computing in water resources. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08803-3

  • Senapati T, Samanta P, Roy R, Sasmal T, Ghosh AR (2021) Artificial neural network: an alternative approach for assessment of biochemical oxygen demand of the Damodar River, West Bengal, India. In: Intelligent Environmental Data Monitoring for Pollution Management. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819671-7.00010-5

  • Setshedi KJ, Mutingwende N, Ngqwala NP (2021) The use of artificial neural networks to predict the physicochemical characteristics of water quality in three district municipalities, Eastern Cape Province, South Africa. Int J Environ Res Public Health 18:5248. https://doi.org/10.3390/10.3390/ijerph18105248

    Article  CAS  Google Scholar 

  • Shah MI, Alaloul WS, Alqahtani A, Aldrees A, Musarat MA, Javed MF (2021) Predictive modeling approach for surface water quality: development and comparison of machine learning models. Sustainability 13:7515. https://doi.org/10.3390/su13147515

    Article  CAS  Google Scholar 

  • Shamshirband S, Jafari Nodoushan E, Adolf JE, Abdul Manaf A, Mosavi A, Chau KW (2019) Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng Applic Comput Fluid Mech 13(1):91–101. https://doi.org/10.1080/19942060.2018.1553742

    Article  Google Scholar 

  • Sibanda T, Chigor VN, Koba S, Obi CL, Okoh AI (2014) Characterisation of the physicochemical qualities of a typical rural-based river: Ecological and public health implications. Int J Environ Sci Technol 11(6):1771–1780. https://doi.org/10.1007/s13762-013-0376-z

    Article  CAS  Google Scholar 

  • Sobhanardakani S (2019) Ecological and human health risk assessment of heavy metal content of atmospheric dry deposition, a case study: Kermanshah. Iran. Biol Trace Elem Res 187:602–610. https://doi.org/10.1007/s12011-018-1383-1

    Article  CAS  Google Scholar 

  • Sobhanardakani S, Tayebi L, Hosseini SV (2018) Health risk assessment of arsenic and heavy metals (Cd, Cu, Co, Pb, and Sn) through consumption of caviar of Acipenser persicus from Southern Caspian Sea. Environ Sci Pollut Res 25:2664–2671. https://doi.org/10.1007/s11356-017-0705-8

    Article  CAS  Google Scholar 

  • Sobhanardakani S (2017) Potential health risk assessment of heavy metals via consumption of caviar of Persian sturgeon. Marine Pollut Bull 123(1-2):34–38. https://doi.org/10.1016/j.marpolbul.2017.09.033

    Article  CAS  Google Scholar 

  • Solangi GS, Siyal AA, Babar MM, Siyal P (2019) Evaluation of drinking water quality using the water quality index (WQI), the synthetic pollution index (SPI) and geospatial tools in Thatta district, Pakistan. Desalin Water Treat. https://doi.org/10.5004/dwt.2019.24241

  • SON (Standard Organization of Nigeria) (2015) Nigerian-standard for-drinking-water-quality-NIS-554-2015 (pp. 1–28)

  • Srinivas Y, Aghil TB, Hudson Oliver D, Nithya Nair C, Chandrasekar N (2017) Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India. Appl Water Sci 7:1429–1438. https://doi.org/10.1007/s13201-015-0325-8

    Article  CAS  Google Scholar 

  • Subramani T, Elango L, Damodarasamy SR (2005) Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu. India. Environ Geol 47(8):1099–1110

    Article  CAS  Google Scholar 

  • Sun K, Rajabtabar M, Samadi SZ, Rezaie-Balf M, Ghaemi A, Band SS, Mosavi A (2021) An integrated machine learning, noise suppression, and population-based algorithm to improve total dissolved solids prediction. Eng Applic Comput Fluid Mech 15(1):251–271. https://doi.org/10.1080/19942060.2020.1861987

    Article  Google Scholar 

  • Swathi L, Lokeshappa B (2015) Artificial neural networks application in prediction of water quality. Int J Innov Res Sci Eng Technol 4(8):6911–6916

    Article  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metals levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntesuchungen. 33(1-4):566–575

    Article  Google Scholar 

  • Tyagi S, Sharma B, Singh P, Dobhal R (2013) Water quality assessment in terms of water quality index. Am J Water Resour 1(3):34–38

    Article  Google Scholar 

  • Ukah BU, Ameh PD, Egbueri JC, Unigwe CO, Ubido OE (2020) Impact of effluent-derived heavy metals on the groundwater quality in Ajao industrial area, Nigeria: an assessment using entropy water quality index (EWQI). Int J Energ Water Res. https://doi.org/10.1007/s42108-020-00058-5

  • Vasileiou E, Papazotos P, Dimitrakopoulos D, Perraki M (2019) Expounding the origin of chromium in groundwater of the Sarigkiol basin, Western Macedonia, Greece: a cohesive statistical approach and hydrochemical study. Environ Monit Assess 191(8):509. https://doi.org/10.1007/s10661-019-7655-1

    Article  CAS  Google Scholar 

  • Verma AK, Singh TN (2013) Prediction of water quality from simple field parameters. Environ Earth Sci 69:821–829. https://doi.org/10.1007/s12665-012-1967-6

    Article  CAS  Google Scholar 

  • Vetrimurugan E, Elango L, Rajmohan N (2013) Sources of contaminants and groundwater quality in the coastal part of a river delta. Int J Environ Sci Technol 10:473–486. https://doi.org/10.1007/s13762-012-0138-3

    Article  CAS  Google Scholar 

  • Wagh V, Mukate S, Muley A, Kadam A, Panaskar D, Varade A (2020) Study of groundwater contamination and drinking suitability in basaltic terrain of Maharashtra, India through PIG and multivariate statistical techniques. J Water Supply Res Technol AQUA 69(4):398–414

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Article  Google Scholar 

  • Weber-Scannell PK, Duffy LK (2007) Effects of total dissolved solids on aquatic organism: a review of literature and recommendation for salmonid species. Am J Environ Sci. https://doi.org/10.3844/ajessp.2007.1.6

  • WHO (2011) Hardness in Drinking-water: background document for development of WHO guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  • WHO (2017) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Yaseen ZM, Ramal MM, Diop L, Jaafar O, Demir V, Kisi O (2018) Hybrid adaptive neuro-fuzzy models for water quality index estimation. Water Resour Manage. https://doi.org/10.1007/s11269-018-1915-7

  • Yidana SM (2010) Groundwater classification using multivariate statistical methods: Birimian Basin, Ghana. J Environ Eng 136:1379–1388. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000291

    Article  CAS  Google Scholar 

  • Zou H, Zou Z, Wang X (2015) An enhanced K-means algorithm for water quality analysis of the Haihe River in China. Int J Environ Res Public Health 12:14400–14413. https://doi.org/10.3390/ijerph121114400

    Article  CAS  Google Scholar 

  • Zubaidah T, Karnaningroem N, Slamet A (2018) K-means method for clustering water quality status on the rivers of Banjarmasin. Indonesia. ARPN J Eng Appl Sci 13(11):3692–3697

    Google Scholar 

Download references

Acknowledgements

The author expresses gratitude to the anonymous reviewers and the editor, for their useful review comments.

Author information

Authors and Affiliations

Authors

Contributions

Johnbosco C. Egbueri: Conceptualization, manuscript design, machine learning modeling, indexical computation, data analysis, manuscript writing, editing, review and revision; Johnson C. Agbasi: machine learning modeling, indexical computation, editing, manuscript review and revision

Corresponding author

Correspondence to Johnbosco C. Egbueri.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Xianliang Yi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egbueri, J.C., Agbasi, J.C. Data-driven soft computing modeling of groundwater quality parameters in southeast Nigeria: comparing the performances of different algorithms. Environ Sci Pollut Res 29, 38346–38373 (2022). https://doi.org/10.1007/s11356-022-18520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18520-8

Keywords

Navigation