Skip to main content
Log in

Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We review scale dependence of hydraulic conductivities and effective porosities for prediction of contaminant transport in four UK karst aquifers. Approaches for obtaining hydraulic parameters include core plug, slug, pumping and pulse tests, calibration of groundwater flow models and spring recession curves. Core plug and slug tests are unsuitable because they do not characterize a large enough volume to include a representative fracture network. Pumping test values match regional-scale hydraulic conductivities from flow modelling for the less intensively karstified aquifers: Magnesian Limestone, Jurassic Limestone and Cretaceous Chalks. Reliable bulk hydraulic conductivities were not available for the intensively karstified Carboniferous Limestone due to dominance of flow through pipe conduits in Mendips. Here, the only hydraulic conductivity value found from spring recession is one order of magnitude higher than that indicated by pumping tests. For all four carbonate aquifers, effective porosities assumed for transport modelling are two orders of magnitude higher than those found from tracer and hydrogeophysical tests. Thus, a combination of low hydraulic conductivities and assumed flowing porosities resulted in underestimated flow velocities. The UK karst aquifers are characterized by a range of hydraulic behaviours that fit those of karst aquifers worldwide. Indeed, underestimation of flow velocity due to inappropriate parameter selection is common to intensively karstified aquifers of southern France, north-western Germany and Italy. Similar issues arise for the Canadian Silurian carbonates where the use of high effective porosities (e.g. 5%) in transport models leads to underestimation of groundwater velocities. We recommend values in the range of 0.01–1% for such aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abesser C, Lewis M (2015) A semi-quantitative technique for mapping potential aquifer productivity on the national scale: example of England and Wales (UK). Hydrogeol J 23(8):1677–1694

    Article  Google Scholar 

  • Agbotui PY, West LJ, Bottrell SH (2020) Characterisation of fractured carbonate aquifers using ambient borehole dilution tests. J Hydrol:125191

  • Aliyu MM, Murphy W, Lawrence JA, Collier R (2017) Engineering geological characterization of flints. Q J Eng Geol Hydrogeol 50(2):133–147

    Article  Google Scholar 

  • Allen DJ, Brewerton LJ, Coleby LM, Gibbs BR, Lewis MA, MacDonald AM, Wagstaff SJ, Williams AT (1997) The physical properties of major aquifers in England and Wales. BGS WD/97/34, British Geological Survey, Nottingham (UK)

  • Amoruso A, Crescentini L, Petitta M, Tallini M (2013) Parsimonious recharge/discharge modeling in carbonate fractured aquifers: the groundwater flow in the Gran Sasso aquifer (Central Italy). J Hydrol 476:136–146

    Article  Google Scholar 

  • Anderson MP, Cherry JA (1979) Using models to simulate the movement of contaminants through groundwater flow systems. Crit Rev Environ Sci Technol 9(2):97–156

    Google Scholar 

  • Assari A, Mohammadi Z (2017) Assessing flow paths in a karst aquifer based on multiple dye tracing tests using stochastic simulation and the MODFLOW-CFP code. Hydrogeol J 25(6):1679–1702

    Article  Google Scholar 

  • Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35(1-2):93–110

    Article  Google Scholar 

  • Atkinson TC, Smart PL (1981) Artificial tracers in hydrogeology. In: A Survey of British Hydrogeology 1980. Royal Society, London (UK), pp 173–190

    Google Scholar 

  • Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8-12):861–884

    Article  CAS  Google Scholar 

  • Berlin M, Natarajan N, Vasudevan M, Kumar GS (2020) Influence of transient porosity in a coupled fracture-skin-matrix system at the scale of a single fracture. Environ Sci Pollut Res:1–19

  • Bird MJ, Allen DJ (1989) Hydraulic conductivity measurements of the Carboniferous Limestone, Mendip, Somerset. British Geological Survey Technical Report WD/89/57

  • Bloomfield J (1996) Characterisation of hydrogeologically significant fracture distributions in the Chalk: an example from the Upper Chalk of southern England. J Hydrol 184(3-4):355–379

    Article  Google Scholar 

  • Bredehoeft J, King M (2010) Potential contaminant transport in the regional Carbonate Aquifer beneath Yucca Mountain, Nevada, USA. Hydrogeol J 18(3):775–789

    Article  CAS  Google Scholar 

  • Brunetti E, Jones JP, Petitta M, Rudolph DL (2013) Assessing the impact of large-scale dewatering on fault controlled aquifer systems: a case study in the Acque Albule basin (Tivoli, central Italy). Hydrogeol J 21:401–423

    Article  Google Scholar 

  • Carey MA, Chadha D (1998) Modelling the hydraulic relationship between the River Derwent and the Corallian Limestone aquifer. Q J Eng Geol Hydrogeol 31(1):63–72

    Article  Google Scholar 

  • Chadwick RA (1993) Aspects of basin inversion in southern Britain. J Geol Soc 150(2):311–322

    Article  Google Scholar 

  • Chen Z, Goldscheider N (2014) Modeling spatially and temporally varied hydraulic behavior of a folded karst system with dominant conduit drainage at catchment scale, Hochifen–Gottesacker, Alps. J Hydrol 514:41–52

    Article  Google Scholar 

  • Cook SJ, Fitzpatrick CM, Burgess WG, Lytton L, Bishop P, Sage R (2012) Modelling the influence of solution-enhanced conduits on catchment-scale contaminant transport in the Hertfordshire Chalk aquifer. In: Shepley, M.G., Whiteman, M.I., Hulme, P.J. and Grout M.W. (eds) Groundwater Resources Modelling: A Case Study from the UK. Geol Soc London Spec Publ 364(1):205–225

    Article  Google Scholar 

  • Davison RM, Lerner DN (2000) Evaluating natural attenuation of groundwater pollution from a coal-carbonisation plant: developing a local-scale model using MODFLOW, MODTMR and MT3D. Water Environ J 14(6):419–426

    Article  Google Scholar 

  • Doherty JE, Hunt RJ (2016) Approaches to highly parameterized inversion: a guide to using PEST for groundwater-model calibration. United States Geological Survey, 2010/5159

  • Downing RA, Williams BJP (1969) The groundwater hydrology of the Lincolnshire Limestone. Water Resources Board, Reading, p 160

    Google Scholar 

  • Downing RA, Smith DB, Pearson FJ, Monkhouse RA, Otlet RL (1977) The age of groundwater in the Lincolnshire Limestone, England and its relevance to the flow mechanism. J Hydrol 33(3-4):201–216

    Article  CAS  Google Scholar 

  • Drew DP (2008) Hydrogeology of lowland karst in Ireland. Q J Eng Geol Hydrogeol 41(1):61–72

    Article  Google Scholar 

  • Ducci D, Della Morte R, Mottola A, Onorati G, Pugliano G (2019) Nitrate trends in groundwater of the Campania region (southern Italy). Environ Sci Pollut Res 26(3):2120–2131

    Article  CAS  Google Scholar 

  • Ely DM, Burns ER, Morgan DS, Vaccaro JJ (2014) Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington. United States Geological Survey, 2014-5127.

  • Environment Agency (2016) East Yorkshire Chalk investigation: numerical modelling update and recalibration. Report 62986 R2D1, Leeds (UK)

  • Environment Agency (2019) Manual for the production of Groundwater Source Protection Zones. Report 16864, Warrington (UK)

  • Farrant AR, Cooper AH (2008) Karst geohazards in the UK: the use of digital data for hazard management. Quart J Eng Geol Hydrogeol 41(3):339–356

    Article  Google Scholar 

  • Foley A.E. (2006) The use and development of some groundwater tracers for wellhead protection: studies from the Corallian limestone of Yorkshire. PhD Thesis, University College, London, UK

  • Foley AE, Cachandt G, Franklin J, Willmore F, Atkinson T (2012) Tracer tests and the structure of permeability in the Corallian limestone aquifer of northern England, UK. Hydrogeol J 20(3):483–498

    Article  Google Scholar 

  • Freeze AR, Cherry JA (1979) Groundwater. Prentice Hall, Upper Saddle Hall, NJ (USA)

    Google Scholar 

  • Gallegos JJ, Hu BX, Davis H (2013) Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP. Hydrogeol J 21(8):1749–1760

    Article  Google Scholar 

  • Gárfias J, Llanos H, Martel R, Salas-García J, Bibiano-Cruz L (2018) Assessment of vulnerability and control measures to protect the Salbarua ecosystem from hypothetical spill sites. Environ Sci Pollut Res 25(26):26228–26245

    Article  Google Scholar 

  • Gleeson T, Smith L, Moosdorf N, Hartmann J, Dürr HH, Manning AH, van Beek LP, Jellinek AM (2011) Mapping permeability over the surface of the Earth. Geophys Res Lett 38(2)

  • Goeppert N, Goldscheider N (2011) Transport and variability of fecal bacteria in carbonate conglomerate aquifers. Groundwater 49:77–84

    Article  CAS  Google Scholar 

  • Golder Associates (2006) Guelph-Puslinch Groundwater Protection Study Ver. 4.0. Report 03-1112-016

  • Goldscheider N, Drew D (2014) Methods in karst hydrogeology: IAH: International Contributions to Hydrogeology. Crc Press, Boca Raton, Florida (USA)

    Google Scholar 

  • Goldscheider N, Chen Z, Auler AS, Bakalowicz M, Broda S, Drew D, Hartmann J, Jiang G, Moosdorf N, Stevanovic Z, Veni G (2020) Global distribution of carbonate rocks and karst water resources. Hydrogeol J 28(5):1661–1677

    Article  CAS  Google Scholar 

  • Gregory SP, Maurice LD, West JM, Gooddy DC (2014) Microbial communities in UK aquifers: current understanding and future research needs. Q J Eng Geol Hydrogeol 47(2):145–157

    Article  Google Scholar 

  • Hallam A (1971) Mesozoic geology and the opening of the North Atlantic. J Geol 79(2):129–157

    Article  Google Scholar 

  • Hancock JM (1975) The petrology of the Chalk. Proc Geol Assoc 86(4):499–535

    Article  Google Scholar 

  • Hartmann S, Odling NE, West LJ (2007) A multi-directional tracer test in the fractured Chalk aquifer of E. Yorkshire, UK. J Contam Hydrol 94(3-4):315–331

    Article  CAS  Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52(3):218–242

    Article  Google Scholar 

  • Hill ME, Stewart MT, Martin A (2010) Evaluation of the MODFLOW-2005 conduit flow process. Groundwater 48(4):549–559

    Article  CAS  Google Scholar 

  • Hobbs SL (1988) Recharge, flow and storage in the unsaturated zone of the Mendip limestone aquifer. PhD Thesis, Bristol University

  • Hobbs SL, Gunn J (1998) The hydrogeological effect of quarrying karstified limestone: options for prediction and mitigation. Q J Eng Geol Hydrogeol 31(2):147–157

    Article  Google Scholar 

  • Hu Y, Xu W, Zhan L, Li J, Chen Y (2020) Quantitative characterization of solute transport in fractures with different surface roughness based on ten Barton profiles. Environ Sci Pollut Res:1–16

  • Hussein ME, Odling NE, Clark RA (2013) Borehole water level response to barometric pressure as an indicator of aquifer vulnerability. Water Resour Res 49(10):7102–7119

    Article  Google Scholar 

  • Jeans CV (1980) Early submarine lithification in the Red Chalk and Lower Chalk of eastern England: a bacterial control model and its implications. Proceed York Geol Soc 43(2):81–157

    Article  Google Scholar 

  • Johnson CR, Greenkorn RA, Woods EG (1966) Pulse-testing: a new method for describing reservoir flow properties between wells. J Pet Technol 18(12):1–599

    Article  Google Scholar 

  • Jones BR, Brouwers LB, Van Tonder WD, Dippenaar MA (2017) Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock. Environ Sci Pollut Res 24(15):3203–13223

    Article  CAS  Google Scholar 

  • Kana AA, West LJ, Clark RA (2013) Fracture aperture and fill characterization in a limestone quarry using GPR thin-layer AVA analysis. Near Surf Geophys 11(3):293–306

    Article  Google Scholar 

  • Király L (1975) Rapport sur l'état actuel des connaissances dans le domaine des caractères physiques des roches karstiques. Hydrogeology of karstic terrains (Hydrogéologie des terrains karstiques). Internat Union Geol Sci 3:53–67

    Google Scholar 

  • Le Borgne T, Bour O, Paillet FL, Caudal JP (2006) Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. J Hydrol 328(1-2):347–359

    Article  Google Scholar 

  • Little R, Muller E, Mackay R (1996) Modelling of contaminant migration in a chalk aquifer. J Hydrol 175(1-4):473–509

    Article  CAS  Google Scholar 

  • Liu F, Yi S, Ma H, Huang J, Tang Y, Qin J, Zhou WH (2019) Risk assessment of groundwater environmental contamination: a case study of a karst site for the construction of a fossil power plant. Environ Sci Pollut Res 26(30):30561–30574

    Article  CAS  Google Scholar 

  • MacDonald AM, Allen DJ (2001) Aquifer properties of the Chalk of England. Q J Eng Geol Hydrogeol 34(4):371–384

    Article  CAS  Google Scholar 

  • Maldaner CH, Quinn PM, Cherry JA, Parker BL (2018) Improving estimates of groundwater velocity in a fractured rock borehole using hydraulic and tracer dilution methods. J Contam Hydrol 214:75–86

    Article  CAS  Google Scholar 

  • Maurice LD, Atkinson TC, Barker JA, Bloomfield JP, Farrant AR, Williams AT (2006) Karstic behaviour of groundwater in the English Chalk. J Hydrol 330(1-2):63–70

    Article  Google Scholar 

  • Mawson M, Tucker M (2009) High-frequency cyclicity (Milankovitch and millennial-scale) in slope-apron carbonates: Zechstein (Upper Permian), North-east England. Sedimentology 56(6):1905–1936

    Article  CAS  Google Scholar 

  • Medici G, West LJ, Mountney NP (2016) Characterizing flow pathways in a sandstone aquifer: tectonic vs sedimentary heterogeneities. J Contam Hydrol 194:36–58

    Article  CAS  Google Scholar 

  • Medici G, West LJ, Banwart SA (2019a) Groundwater flow velocities in a fractured carbonate aquifer-type: implications for contaminant transport. J Contam Hydrol 222:1–16

    Article  CAS  Google Scholar 

  • Medici G, West LJ, Chapman PJ, Banwart SA (2019b) Prediction of contaminant transport in fractured carbonate aquifer-types; case study of the Permian Magnesian Limestone Group (NE England, UK). Environ Sci Pollut Res 26:24863–24884

    Article  CAS  Google Scholar 

  • Medici G, West LJ, Mountney NP, Welch M (2019c) Permeability of rock discontinuities and faults in the Triassic Sherwood Sandstone Group (UK): insights for management of fluvio-aeolian aquifers worldwide. Hydrogeol J 27(8):2835–2855

    Article  CAS  Google Scholar 

  • Medici G, Baják P, West LJ, Chapman PJ, Banwart SA (2021a) DOC and nitrate fluxes from farmland; impact on a dolostone aquifer KCZ. J Hydrol 595:125658

    Article  CAS  Google Scholar 

  • Medici G, Smeraglia L, Torabi A, Botter C (2021b) A review of modelling approaches to deformed carbonate aquifers. Groundwater 59(3):334–351

    Article  CAS  Google Scholar 

  • Munn JD 2012. High resolution discrete fracture network characterization using inclined coreholes in a Silurian dolostone aquiefer in Guelph, Ontario. MASc Thesis, University of Guelph

  • Neymeyer A, Williams RT, Younger PL (2007) Migration of polluted mine water in a public supply aquifer. Q J Eng Geol Hydrogeol 40(1):75–84

    Article  CAS  Google Scholar 

  • Noushabadi MJ, Jourde H, Massonnat G (2011) Influence of the observation scale on permeability estimation at local and regional scales through well tests in a fractured and karstic aquifer (Lez aquifer, Southern France). J Hydrol 403:321–336

    Article  Google Scholar 

  • Odling NE, West LJ, Hartmann S, Kilpatrick A (2013) Fractional flow in fractured chalk; a flow and tracer test revisited. J Contam Hydrol 147:96–111

    Article  CAS  Google Scholar 

  • Palmucci W, Rusi S, Di Curzio D (2016) Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy. Environ Sci Pollut Res 23(12):11790–11805

    Article  CAS  Google Scholar 

  • Parker BL, Bairos K, Maldaner CH, Chapman SW, Turner CM, Burns LS, Plett J, Carter R, Cherry JA (2019) Metolachlor dense non-aqueous phase liquid source conditions and plume attenuation in a dolostone water supply aquifer. In: Ofterdinger, U., MacDonald, A.M., Compte J.C. and Young M.E. (eds) Groundwater in Fractured Bedrock Environments: Managing Catchment and Subsurface Resources. Geol Soc London Spec Publ 479(1):207–236

    Article  Google Scholar 

  • Perrin J, Parker BL, Cherry JA (2011) Assessing the flow regime in a contaminated fractured and karstic dolostone aquifer supplying municipal water. J Hydrol 400(3-4):396–410

    Article  CAS  Google Scholar 

  • Pringle JK, Westerman AR, Schmidt A, Harrison J, Shandley D, Beck J, Donahue RE, Gardiner AR (2002) Investigating Peak Cavern, Castleton, Derbyshire, UK: integrating cave survey, geophysics, geology and archaeology to create a 3D digital CAD model. Cave Karst Sci 29(2):67–74

    Google Scholar 

  • Reh R, Licha T, Nödler K, Geyer T, Sauter M (2015) Evaluation and application of organic micro-pollutants (OMPs) as indicators in karst system characterization. Environ Sci Pollut Res 22(6):4631–4643

    Article  CAS  Google Scholar 

  • Reimann T, Hill ME (2009) MODFLOW-CFP: a new conduit flow process for MODFLOW–2005. Groundwater 47(3):321–325

    Article  CAS  Google Scholar 

  • Ren S, Gragg S, Zhang Y, Carr BJ, Yao G (2018) Borehole characterization of hydraulic properties and groundwater flow in a crystalline fractured aquifer of a headwater mountain watershed, Laramie Range, Wyoming. J Hydrol 561:780–795

    Article  Google Scholar 

  • Ren K, Pan X, Zeng J, Yuan D (2019) Contaminant sources and processes affecting spring water quality in a typical karst basin (Hongjiadu Basin, SW China): insights provided by hydrochemical and isotopic data. Environ Sci Pollut Res 26(30):31354–31367

    Article  CAS  Google Scholar 

  • Rivett MO, Smith JWN, Buss SR, Morgan P (2007) Nitrate occurrence and attenuation in the major aquifers of England and Wales. Q J Eng Geol Hydrogeol 40(4):335–352

    Article  CAS  Google Scholar 

  • Rusi S, Di Curzio D, Palmucci W, Petaccia R (2018) Detection of the natural origin hydrocarbon contamination in carbonate aquifers (central Apennine, Italy). Environ Sci Pollut Res 25(16):15577–15596

    Article  CAS  Google Scholar 

  • Saller SP, Ronayne MJ, Long AJ (2013) Comparison of a karst groundwater model with and without discrete conduit flow. Hydrogeol J 21(7):1555–1566

    Article  Google Scholar 

  • Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a karst aquifer (Gallusquelle, Malm, SW. Germany). Tübinger Geowiss Arb, C13. http://tobias-lib.uni-tuebingen.de/volltexte/2005/2039/ pdf/13.pdf]

  • Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Groundwater 37(6):904–919

    Article  CAS  Google Scholar 

  • Shepley MG, Whiteman MI, Hulme PJ, Grout MW (2012) Introduction: groundwater resources modelling: a case study from the UK. Geol Soc Lond, Spec Publ 364(1):1–6

    Article  Google Scholar 

  • Shoemaker WB, Kuniansky EL, Birk S, Bauer S, Swain ED (2008) Documentation of a conduit flow process (CFP) for MODFLOW-2005. Techniques and Methods, A24

  • Sorensen JP, Maurice L, Edwards FK, Lapworth DJ, Read DS, Allen D, Butcher AS, Newbold LK, Townsend BR, Williams PJ (2013) Using boreholes as windows into groundwater ecosystems. PLoS One 8(7):70264

    Article  CAS  Google Scholar 

  • Souque C, Knipe RJ, Davies RK, Jones P, Welch MJ, Lorenz J (2019) Fracture corridors and fault reactivation: example from the Chalk, Isle of Thanet, Kent, England. J Struct Geol 122:11–26

    Article  Google Scholar 

  • Sullivan TP, Gao Y, Reimann T (2019) Nitrate transport in a karst aquifer: numerical model development and source evaluation. J Hydrol 573:432–448

    Article  CAS  Google Scholar 

  • Taylor R, Cronin A, Pedley S, Barker J, Atkinson T (2004) The implications of groundwater velocity variations on microbial transport and wellhead protection–review of field evidence. FEMS Microbiol Ecol 49:17–26

    Article  CAS  Google Scholar 

  • Trundell PR (2014) Hydraulic head hydrographs from depth-discrete high resolution multilevel systems for estimating loading efficiency and specific storage in the silurian dolostone in Guelph, ON. MASc Thesis, University of Guelph

  • Tucker ME (1991) Sequence stratigraphy of carbonate-evaporite basins: models and application to the Upper Permian (Zechstein) of northeast England and adjoining North Sea. J Geol Soc 148(6):1019–1036

    Article  Google Scholar 

  • Wang L, Stuart ME, Bloomfield JP, Butcher AS, Gooddy DC, McKenzie AA, Lewis MA, Williams A (2012) Prediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great Britain. Hydrol Process 26(2):226–239

    Article  CAS  Google Scholar 

  • Wealthall GA, Thornton SF, Lerner DN (2001) Assessing the transport and fate of MTBE-amended petroleum hydrocarbons in the chalk aquifer, UK. In: Thornton, S.F., Oswald, S.E. (Eds.), Groundwater quality: Natural attenuation of groundwater pollution. IAHS Publ 275:205–211

    CAS  Google Scholar 

  • West LJ, Odling NE (2007) Characterization of a multilayer aquifer using open well dilution tests. Groundwater 45(1):74–84

    Article  CAS  Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65(2-3):85–105

    Article  Google Scholar 

  • Wignall PB, Newton R (2001) Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sediment Geol 144(3-4):335–356

    Article  CAS  Google Scholar 

  • Worthington SRH (2015) Diagnostic tests for conceptualizing transport in bedrock aquifers. J Hydrol 529:365–372

    Article  Google Scholar 

  • Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Groundwater 47(3):326–336

    Article  CAS  Google Scholar 

  • Worthington SR, Smart CC, Ruland W (2012) Effective porosity of a carbonate aquifer with bacterial contamination: Walkerton, Ontario, Canada. J Hydrol 464:517–527

    Article  Google Scholar 

  • Zuffianò LE, Basso A, Casarano D, Dragone V, Limoni PP, Romanazzi A, Santaloia F, Polemio M (2016) Coastal hydrogeological system of mar Piccolo (Taranto, Italy). Environ Sci Pollut Res 23(13):12502–12514

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the research colleagues of the University of Leeds (UK) that contributed to advance knowledge of the UK karst aquifers over the years. Noelle Odling and Simon Bottrell are thanked for the interesting discussions on the four karst aquifers of Great Britain. Steven Banwart is thanked for funding recent published research that provided data for this review on the Magnesian Limestone aquifer. Neil Gunn (Atkins) and Daniele Coltellacci (Sapienza University of Rome) provided assistance on finding outcrop images and relevant papers, respectively. Critical discussions on the carbonate aquifers of Italy, France and Canada with Marco Petitta (Sapienza University of Rome), Hervé Jourde (Université de Montpellier) and Beth Parker (University of Guelph) were also appreciated. Nico Goldscheider (Karlsruhe Institute of Technology) has kindly provided the global map of karst aquifers. Finally, the manuscript benefitted from constructive review comments of two anonymous reviewers and Editor, Xianliang Yi (Nanjing University).

Availability of data and materials

The data that supports the findings of this study are available from the corresponding author upon reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

Giacomo Medici, conceptualization, data curation, and writing; Jared West, supervision and conceptualization

Corresponding author

Correspondence to Giacomo Medici.

Ethics declarations

Ethics approval and consent to participate

Note applicable

Consent for publication

Note applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Xianliang Yi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medici, G., West, L.J. Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction. Environ Sci Pollut Res 28, 43050–43063 (2021). https://doi.org/10.1007/s11356-021-14840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14840-3

Keywords

Navigation