Skip to main content
Log in

Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Iron and manganese are two of the most common contaminants that exceed the threshold imposed by international and national legislation. When these contamination occurs in groundwater, the use of the water resource is forbidden for any purposes. Several studies investigated these two metals in groundwater, but research focused in the Central Adriatic area are still lacking. Thus, the objective of this study is to identify the origin of Fe and Mn contamination in groundwater and the hydrogeochemical processes that can enrich aquifers with these metals. This work is based on hydrogeochemical and multivariate statistical analysis of analytical results undertaken on soils and groundwater. Fe and Mn contamination are widespread in the alluvial aquifers, and their distribution is regulated by local conditions (i.e. long residence time, presence of peat or organic-rich fine sediments or anthropic pollution) that control redox processes in the aquifers and favour the mobilisation of these two metals in groundwater. The concentration of iron and manganese identified within soil indicates that the latter are a concrete source of the two metals. Anthropic impact on Fe and Mn contamination of groundwater is not related to agricultural activities, but on the contrary, the contribution of hydrocarbons (e.g. spills) is evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alloway BJ (2013) Heavy metals in soils. Trace metals and metalloids in soil and their bioavailability. Environmental Pollution 22. doi:10.1007/978-94-007-4470-7

  • APAT, IRSA-CNR (2003) Metodi analitici per le acque [Analytical methods for water]. Manuali e Linee Guida, 29/2003. Available via dialog: http://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/metodi-analitici-per-le-acque

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema Publishers, Laiden

    Book  Google Scholar 

  • Atekwana EA, Atekwana E, Legall FD, Krishnamurthy RV (2005) Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. J Contam Hydrol 80(3):149–167. doi:10.1016/j.jconhyd.2005.06.009

    Article  CAS  Google Scholar 

  • Belkhiri L, Narany TS (2015) Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality. Water Resour Manag 29(6):2073–2089

    Article  Google Scholar 

  • Berbenni P, Pollice A, Canziani R, Stabile L, Nobili F (2000) Removal of iron e manganese from hydrocarbon-contaminated groundwaters. Bioresour Technol 74(2):109–114. doi:10.1016/S0960-8524(00)00003-1

    Article  CAS  Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Res 51(2)

  • Boni C, Bono P, Capelli G (1986) Schema idrogeologico dell’Italia centrale [Hydrogeological scheme of central Italy]. Mem Soc Geol Ital 35:991–1012

    Google Scholar 

  • Botes PJ (2004) Investigation of mobility trace elements in river sediments using ICP-OES. University of Pretoria Edition

  • Botes PJ, Van Staden JF (2007) Investigation of trace element mobility in river sediments using ICP-OES. Water SA 31(2):183–192

    Google Scholar 

  • Bowen HJM (1979) Environmental Chemistry of the Elements, vol 333. Adacemic Press, London

    Google Scholar 

  • Bradl H (2005) Heavy metals in the environment: origin, interaction e remediation (Vol. 6). Academic Press

  • Briz-Kishore BH, Murali G (1989) Factor analysis for revealing hydrochemical characteristics of a watershed. Environ Geol 19(1):3–9. doi:10.1007/BF01740571

    Google Scholar 

  • Burri E, Petitta M (2004) Agricultural changes affecting water availability: from abundance to scarcity (Fucino Plain, central Italy). Irrig Drain 53(3):287–299. doi:10.1002/ird.119

    Article  Google Scholar 

  • Caschetto M, Barbieri M, Galassi DMP, Mastrorillo L, Rusi S, Stoch F, Di Cioccio A, Petitta M (2014) Human alteration of groundwater–surface water interactions (Sagittario River, Central Italy): implication for flow regime, contaminant fate e invertebrate response. Environ Earth Sci 71(4):1791–1807. doi:10.1007/s12665-013-2584-8

    Article  Google Scholar 

  • Cattel RB (1966) The screen test for the number of factors. Multivar Behav Res 1:245–276. doi:10.1207/s15327906mbr0102_10

    Article  Google Scholar 

  • Celico P (1983) Idrogeologia dell’Italia centro meridionale [Hydrogeology of central-southern Italy]. Quaderni della Cassa per il Mezzogiorno 4/2

  • Chen J, Gu B, Royer RA, Burgos WD (2003) The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci Total Environ 307(1):167–178

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2006) The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons

  • Desiderio G, Rusi S (2004) Idrogeologia e idrogeochimica delle acque mineralizzate dell’avanfossa abruzzese molisana [Hydrogeology e hydrochemistry of the mineralized waters of the Abruzzo e Molise foredeep (Central Italy)]. Boll Soc Geol Ital 123(3):373–389

    Google Scholar 

  • Desiderio G, Nanni T, Rusi S (1999) Gli acquiferi delle pianure alluvionali centro adriatiche [The aquifers of the central Adriatic alluvial plains]. Quaderni di Geologia Applicata 2:21–30

    Google Scholar 

  • Desiderio G, Nanni T, Rusi S (2000) La pianura alluvionale del fiume Pescara (Abruzzo): idrogeologia e vulnerabilità dell’acquifero [The alluvial plain of Pescara river (Abruzzo): hydrogeology and aquifer vulnerability]. Mem Soc Geol Ital 56:197–211

    Google Scholar 

  • Desiderio G, Nanni T, Rusi S (2002) Idrogeologia e qualità delle acque degli acquiferi della conca intramontana di Sulmona (Abruzzo). Atti I convegno AIGA, 315-342

  • Desiderio G, Nanni T, Rusi S (2003) La pianura del fiume Vomano (Abruzzo): idrogeologia, antropizzazione e suoi effetti sul depauperamento della falda [The Vomano river plain (Abruzzo-central Italy): hydrogeology, anthropic evolution and its effects on the depletion of the unconfined aquifer]. Boll Soc Geol Ital 122(3):421–434

    Google Scholar 

  • Desiderio G, Ferracuti L, Rusi S (2007) Structural-Stratigraphic of Middle Adriatic Alluvial Plains e its Control on Quantitative e Qualitative Groundwater Circulation. Mem Descr Carta Geol d’It 76:147–162

    Google Scholar 

  • Desiderio G, Rusi S, Tatangelo F (2010) Caratterizzazione idrogeochimica delle acque sotterranee abruzzesi e relative anomalie [Hydrogeochemical characterization of Abruzzo groundwaters and relative anomalies]. Ital J Geosci 129(2):207–222. doi:10.3301/IJG.2010.05

    Google Scholar 

  • Desiderio G, D’arcevia CFV, Nanni T, Rusi S (2012) Hydrogeological mapping of the highly anthropogenically influenced Peligna Valley intramontane basin (Central Italy). J Maps 8(2):165–168. doi:10.1080/17445647.2012.680778

    Article  Google Scholar 

  • Dragon K (2006) Application of factor analysis to study contamination of a semi-confined acquifer (Wielkopolska buried valley acquifer, Poland). J Hydrol 331:272–279. doi:10.1016/j.jhydrol.2006.05.032

    Article  Google Scholar 

  • EEA - European Environment Agency (2006) Corine Land Cover. http://www.eea.europa.eu/publications/COR0-landcover

  • EU - European Union (1998) Direttiva 98/83/CE del Consiglio del 3 novembre 1998 concernente la qualità delle acque destinate al consumo umano. http://eur-lex.europa.eu/legal-content/IT/ALL/?uri = CELEX:31998L0083

  • EU – European Union (2000) Direttiva 2000/60/CE, Direttiva 2000/60/CE del Parlamento europeo e del Consiglio, del 23 ottobre 2000, che istituisce un quadro per l’azione comunitaria in materia di acque. http://eur-lex.europa.eu/legal-content/IT/ALL/?uri = CELEX:32000L0060

  • EU - European Union (2006) Direttiva 2006/118/CE, pubblicata sulla GU dell’UE il 27.12. 06, recante nuove misure sulla protezione delle acque sotterranee ad integrazione della direttiva quadro 2000/60/CE. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri = OJ:L:2006:372:0019:0031:IT:PDF

  • Ferraz HB, Bertolucci PHF, Pereira JS, Lima JGC, Andrade LAF (1988) Chronic exposure to the fungicide maneb may produce symptoms e signs of CNS manganese intoxication. Neurology 38(4):550–553. doi:10.1212/WNL.38.4.550

    Article  CAS  Google Scholar 

  • Fiorillo F, Petitta M, Preziosi E, Rusi S, Esposito L, Tallini M (2015) Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy). Environ Earth Sci 74:153–172. doi:10.1007/s12665-014-3946-6

    Article  Google Scholar 

  • Ford RG, Wilkin RT, Puls RW (2007) Monitored natural attenuation of inorganic contaminants in ground water volume 1 - technical basis for assessment. National Risk Management Research Laboratory Office of Research and Development. US Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Furi W, Razack M, Abiye TA, Kebede S, Legesse D (2012) Hydrochemical characterization of complex volcanic aquifer in a continental rifted zone: the Middle Awash basin. Etiopia Hydrogeol J 20:385–400. doi:10.1007/s10040-011-0807-1

    Article  CAS  Google Scholar 

  • Giblin AE (2009) Iron and manganese. in Chief, Encyclopedia of Inland Waters: Elsevier Press, pp 35-44

  • Gilmour C, Riedel G (2009) Biogeochemistry of Trace Metals e Metalloids. in Chief, Encyclopedia of Inland Waters: Elsevier Press, pp 7-15. doi:10.1016/B978-012370626-3.00095-8

  • Grazuleviciene R, Nadisauskiene R, Buinauskiene J, Grazulevicius T (2009) Effects of elevated levels of manganese and iron in drinking water on birth outcomes. Pol J Environ Stud 18(5):819–825

    CAS  Google Scholar 

  • Holliger C, Zehnder AJ (1996) Anaerobic biodegradation of hydrocarbons. Curr Opin Biotechnol 7(3):326–330. doi:10.1016/S0958-1669(96)80039-5

    Article  CAS  Google Scholar 

  • Homoncik SC, MacDonald AM, Heal KV, Dochartaigh BÉÓ, Ngwenya BT (2010) Manganese concentrations in Scottish groundwater. Sci Total Environ 408(12):2467–2473

    Article  CAS  Google Scholar 

  • Howe PD, Malcolm HM, Dobson S (2004) Manganese and its compounds: environmental aspects. Concise international chemical assessment document

  • Huang B, Li Z, Chen Z, Chen G, Zhang C, Huang J, Nie X, Xiong W, Zeng G (2015) Study and health risk assessment of the occurrence of iron and manganese in groundwater at the terminal of the Xiangjiang River. Environ Sci Pollut Res 1-10, in press

  • IR - Italian Republic (2006) Decreto Legislativo 3 Aprile 2006, n. 152.“ Norme in materia ambientale”. Gazzetta Ufficiale Repubblica Italiana n. 88 del 14/06/2006. http://www.camera.it/parlam/leggi/deleghe/06152dl.htm

  • IR - Italian Republic (2009) Decreto Legislativo 16 Marzo 2009, n. 30. Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall’inquinamento e dal deterioramento. Gazzetta Ufficiale Repubblica Italiana n. n.79 del 4-4-2009. http://www.camera.it/parlam/leggi/deleghe/09030dl.htm

  • Jurgens BC, McMahon PB, Chapelle FH, Eberts SM (2009) An Excel workbook for identifying redox processes in ground water. U. S. Geological Survey Open-File Report 2009-1004; USGS: Reston, VA

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrka 23:187–200. doi:10.1007/BF02289233

    Article  Google Scholar 

  • Kim DM, Yun ST, Kwon MJ, Mayer B, Kim KH (2014) Assessing redox zones e seawater intrusion in a coastal aquifer in South Korea using hydrogeological, chemical e isotopic approaches. Chem Geol 390:119–134. doi:10.1016/j.chemgeo.2014.10.024

    Article  CAS  Google Scholar 

  • Langmuir D, Hall P, Drever J (1997) Environmental Geochemistry. Prentice Hall, New Jersey

    Google Scholar 

  • Lindsay WLM (1991) Iron oxide solubilization by organic matter e its effect on iron availability. In Iron nutrition and interactions in plants. Springer Netherlands, pp 29-36

  • Lindsay WLM, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, e copper. Soil Sci Soc Am J 42(3):421–428. doi:10.2136/sssaj1978.03615995004200030009x

    Article  CAS  Google Scholar 

  • McLean and Bledsoe (1992) McLean JE, Bledsoe BE (1992) Behavior of Metals in Soils. US EPA Ground Water Issue

  • McMahon PB, Chapelle FH (2008) Redox processes e water quality of selected principal aquifer systems. Ground Water 46(2):259–271. doi:10.1111/j.1745-6584.2007.00385.x

    Article  CAS  Google Scholar 

  • Mikac N, Cosovic B, Ahel M, Andreis S, Toncic Z (1998) Assessment of groundwater contamination in the vicinity of a municipal solid waste landfill (Zagreb, Croatia). Water Sci Technol 37(8):37–44. doi:10.1016/S0273-1223(98)00233-9

    Article  CAS  Google Scholar 

  • Molinari A, Ayora C, Marcaccio M, Guadagnini L, Sanchez-Vila X, Guadagnini A (2014) Geochemical modeling of arsenic release from a deep natural solid matrix under alternated redox conditions. Environ Sci Pollut Res 21(3):1628–1637

    Article  CAS  Google Scholar 

  • Nanni T, Rusi S (2003) Idrogeologia del massiccio carbonatico della montagna della Majella (Appennino centrale) [Hydrogeology of the «montagna della majella» carbonate massif (Central Apennines-Italy)]. Boll Soc Geol Ital 122(2):173–202

    Google Scholar 

  • Nanni T, Vivalda P (1999) Le acque salate dell’Avanfossa marchigiana; origine, chimismo e caratteri strutturali delle zone di emergenza [The salt waters of the Marche foredeep: origin, chemistry and structural characters of the emergency zones]. Boll Soc Geol Ital 118(1):191–215

    Google Scholar 

  • O’Day PA, Vlassopoulos D, Root R, Rivera N (2004) The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc Natl Acad Sci U S A 101(38):13703–13708

    Article  Google Scholar 

  • Palmucci W, Rusi S (2013) Origin and distribution of Iron, Manganese and Boron in the Abruzzo region groundwaters. Hydrogeochemical survey on the Saline sample area. Rend Online Soc Geol Ital 22:222–224

    Google Scholar 

  • Palmucci W, Rusi S (2014) Boron-rich groundwater in Central Eastern Italy: a hydrogeochemical e statistical approach to define origin e distribution. Environ Earth Sci 72(12):5139–5157. doi:10.1007/s12665-014-3384-5

    Article  CAS  Google Scholar 

  • Palmucci W, Rusi S, Tatangelo F (2016) Ring maps applied to hydrogeological and environmental studies in alluvial aquifers, central Italy. J Maps 12(1):33–44. doi:10.1080/17445647.2014.977973

    Article  Google Scholar 

  • Pezzetta E, Lutman A, Martinuzzi I, Viola C, Bernardis G, Fuccaro V (2011) Iron concentrations in selected groundwater samples from the lower Friulian Plain, northeast Italy: importance of salinity. Environ Earth Sci 62(2):377–391. doi:10.1007/s12665-010-0533-3

    Article  CAS  Google Scholar 

  • Postma D, Appelo CAJ (2000) Reduction of Mn-oxides by ferrous iron in a flow system: column experiment e reactive transport modeling. Geochim Cosmochim Acta 64(7):1237–1247. doi:10.1016/S0016-7037(99)00356-7

    Article  CAS  Google Scholar 

  • Ritter L, Solomon K, Sibley P, Hall K, Keen P, Mattu G, Linton B (2002) Sources, pathways, e relative risks of contaminants in surface water e groundwater: a perspective prepared for the Walkerton inquiry. J Toxicol Environ Health A 65(1):1–142. doi:10.1080/152873902753338572

    Article  CAS  Google Scholar 

  • Root RA, Vlassopoulos D, Rivera NA, Rafferty MT, Andrews C, O’Day PA (2009) Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer. Geochim Cosmochim Acta 73(19):5528–5553. doi:10.1016/j.gca.2009.06.025

    Article  CAS  Google Scholar 

  • Rotiroti M, Sacchi E, Fumagalli L, Bonomi T (2014) Origin of Arsenic in Groundwater from the Multilayer Aquifer in Cremona (Northern Italy). Environ Sci Technol 48(10):5395–5403. doi:10.1021/es405805v

    Article  CAS  Google Scholar 

  • Roychoudhury AN, Merrett GL (2006) Redox pathways in a petroleum contaminated shallow sandy aquifer: iron e sulfate reductions. Sci Total Environ 366(1):262–274. doi:10.1016/j.scitotenv.2005.10.024

    Article  CAS  Google Scholar 

  • Ruijten MWMM, Sall HJA, Verberk MM, Smink M (1994) Effect of chronic mixed pesticide exposure on peripheral e autonomic nerve function. Arch Environ Health 49(3):188–195

    Article  CAS  Google Scholar 

  • Schwab AP, Lindsay WL (1983) The effect of redox on the solubility e availability of manganese in a calcareous soil. Soil Sci Soc Am J 47(2):217–220. doi:10.2136/sssaj1983.03615995004700020008x

    Article  CAS  Google Scholar 

  • Shacklette HT, Boerngen JG (1984) Element concentrations in soils e other surficial materials of the conterminous United States; Professional Paper 1270; U.S. Geological Survey, United States Printing Office: Washington, DC, 1984; p 103

  • Tucillo ME, Cozzarelli IM, Herman JH (1999) Iron reduction in the sediments of a hydrocarbon-contaminated aquifer. Appl Geochem 14(5):655–667. doi:10.1016/S0883-2927(98)00089-4

    Article  Google Scholar 

  • Upadhyaya D, Survaiya MD, Basha S, Mandal SK, Thorat RB, Haldar S, Goel S, Dave H, Baxi K, Trivedi RH, Mody KH (2014) Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. Environ Sci Pollut Res 21(5):3880–3890

    Article  CAS  Google Scholar 

  • Vance D (1994) Iron: the environmental impact of a universal element. Natl Environ J 4(3):24–25

    Google Scholar 

  • Voudouris K, Lambrakis N, Papatheodorou G, Daskalaki P (1997) An application of factor analysis for the study of the hydrogeological conditions in Plio-Pleistocene aquifers of NW Achaia (NW Peloponnesus, Greece). Math Geol 29(4):43–59. doi:10.1007/BF02769619

    Article  CAS  Google Scholar 

  • Waber UE, Lienert C, Von Gunten HR (1990) Colloid-related infiltration of trace metals from a river to shallow groundwater. J Contam Hydrol 6(3):251–265. doi:10.1016/0169-7722(90)90020-H

    Article  CAS  Google Scholar 

  • Wang L, Meng XX, Xu HE (2006) Analysis of causes of superstandard Fe and Mn content in source water of catchment areas in Jiamusi City. Environ Sci Manag 1:053

    CAS  Google Scholar 

  • WHO - World Health Organization (2003) Iron in drinking water. WHO Press, Geneva. http://www.who.int/water_sanitation_health/dwq/chemicals/iron.pdf

  • WHO - World Health Organization (2006) Guidelines for drinking-water quality. http://www.who.int/water_sanitation_health/dwq/gdwq0506.pdf

  • WHO - World Health Organization (2011a) Guidelines for drinking-water quality. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/

  • WHO - World Health Organization (2011b) Manganese in drinking water. WHO Press, http://www.who.int/water_sanitation_health/dwq/chemicals/manganese.pdf

  • Yadav IC, Devi NL, Singh S (2015) Reductive dissolution of iron-oxyhydroxides directsgroundwater arsenic mobilization in the upstream of Ganges River basin, Nepal. J Geochem Explor 148:150–160

Download references

Acknowledgments

The authors wish to thank the Regione Abruzzo “Servizio Qualità delle Acque” and the Agenzia Regionale per la Tutela dell’Ambiente (ARTA) – “Progetto Inquinamento Diffuso” for making the groundwater analytical results available. The authors also wish to thank the Agenzia Regionale per i Servizi di Sviluppo Agricolo in Abruzzo (ARSSA) for making the soil analytical results available for this study. The authors are also grateful to reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Palmucci.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmucci, W., Rusi, S. & Di Curzio, D. Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy. Environ Sci Pollut Res 23, 11790–11805 (2016). https://doi.org/10.1007/s11356-016-6371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6371-4

Keywords

Navigation