Skip to main content

Advertisement

Log in

Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The use of zinc oxide nanoparticles (ZnO NPs) is expected to increase soil fertility, crop productivity, and food quality. However, the potential effects of ZnO NP utilization should be deeply understood. This review highlights the behavior of ZnO NPs in soil and their interactions with the soil components. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. The impact of current applications of ZnO NPs in the food industry is also discussed. Based on the literature reviewed, soil properties play a vital role in dispersing, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transfer of ZnO NPs into the soil can affect the soil components, and subsequently, the structure of plants. The toxic effects of ZnO NPs on plants and microbes are caused by various mechanisms, mainly through the generation of reactive oxygen species, lysosomal destabilization, DNA damage, and the reduction of oxidative stress through direct penetration/liberation of Zn2+ ions in plant/microbe cells. The integration of ZnO NPs in food processing improves the properties of the relative ZnO NP–based nano-sensing, active packing, and food/feed bioactive ingredients delivery systems, leading to better food quality and safety. The unregulated/unsafe discharge concentrations of ZnO NPs into the soil, edible plant tissues, and processed foods raise environmental/safety concerns and adverse effects. Therefore, the safety issues related to ZnO NP applications in the soil, plants, and food are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelazeim SA, Shehata NI, Aly HF, Shams SGE (2020) Amelioration of oxidative stress-mediated apoptosis in copper oxide nanoparticles-induced liver injury in rats by potent antioxidants. Sci Rep 10(1):1–14

    Article  CAS  Google Scholar 

  • Adam N, Leroux F, Knapen D, Bals S, Blust R (2014) The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios. Environ Pollut 194:130–137

    Article  CAS  Google Scholar 

  • Ahmad M, Mudgil P, Gani A, Hamed F, Masoodi FA, Maqsood S (2018) Nano-encapsulation of catechin in starch nanoparticles: characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chem 270:95–104

    Article  CAS  Google Scholar 

  • Al-Naamani L, Dutta J, Dobretsov S (2018) Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of okra (Abelmoschus esculentus). Nanomaterials 9:8070479

    Google Scholar 

  • Alshabib NA, Husain FM, Ahmed F, Khan RA, Ahmad I, Alsharaeh E, Khan MS, Hussain A, Rehman MT, Yusuf M (2016) Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci Rep 6:36761

    Article  CAS  Google Scholar 

  • Ameen F, Alsamhary K, Alabdullatif JA, ALNadhari S (2021) A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol Environ Saf 213:112027

    Article  CAS  Google Scholar 

  • Aristizabal-Gil MV, Santiago-Toro S, Sanchez LT, Pinzon MI, Gutierrez JA, Villa CC (2019) ZnO and ZnO/CaO Nanoparticles in Alginate Films. Synthesis, Mechanical Characterization, Barrier Properties and Release Kinetics. LWT 102(7):108217. https://doi.org/10.1016/j.lwt.2019.05.115

  • Aydin B, Sevinc L, Hanley L (2010) Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B Appl Biomater 94:22–31

    Google Scholar 

  • Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27:1875–1882

    Article  CAS  Google Scholar 

  • Bae SH, Yu J, Lee TG (2018) Protein food matrix–ZnO nanoparticle interactions affect protein conformation, but may not be biological responses. Int J Mol Sci 19:3926

    Article  CAS  Google Scholar 

  • Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK (2018) Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Analysis 26:1201–1214

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515:60–69

    Article  CAS  Google Scholar 

  • Barnes RJ, Riba O, Gardner MN, Scott TB, Jackman SA, Thompson IP (2010) Optimization of nanoscale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere 79:448–454

    Article  CAS  Google Scholar 

  • Baumung C, Pflaum T, Schöberl K, Kratz E, Lachenmeier DW, 2016 An update of definitions and regulations regarding nanomaterials in foods and other consumer products. In: Grumezescu, A.M. (Ed.), Novel approaches of nanotechnology in food. Academic Press 1, 1–19

  • Bayat H, Kolahchi Z, Valaey S, Rastgou M, Mahdavi S (2017) Novel impacts of nanoparticles on soil properties: tensile strength of aggregates and compression characteristics of soil. Arch Agron Soil Sci 64(6):776–789. https://doi.org/10.1080/03650340.2017.1393527

    Article  CAS  Google Scholar 

  • Baysal A, Saygın H (2018) Effect of zinc oxide nanoparticles on the trace element contents of soils. Chem Ecol 34:713–726. https://doi.org/10.1080/02757540.2018.1491556

    Article  CAS  Google Scholar 

  • Beitollahi H, Tajik S, Nejad FG, Safaei M (2020) Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J Mater Chem B 8(27):5826–5844

    Article  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646

  • Bhatia S, Verma N (2017) Photocatalytic activity of ZnO nanoparticles with optimization of defects. Mater Res Bull 95:468–476

    Article  CAS  Google Scholar 

  • Bhoya M, Chaudhari PP, Raval CH, Bhatt PK (2014) Effect of nitrogen and zinc on growth and yield of fodder sorghum [Sorghum bicolor (L.) Moench] varieties. Int J Agric Sci 10:294–297

    Google Scholar 

  • Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27:6059–6068

    Article  CAS  Google Scholar 

  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32

    Article  CAS  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  CAS  Google Scholar 

  • Cao J, Feng Y, Lin X, Wang J (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4:10

    Article  Google Scholar 

  • Chaudhary S, Umar A, Bhasin K, Baskoutas S (2018) Chemical sensing applications of ZnO nanomaterials. Materials 11:287

    Article  CAS  Google Scholar 

  • Chaudhary P, Fatima F, Kumar A (2020) Relevance of nanomaterials in food packaging and its advanced future prospects. J Inorg Organomet Polym Mater 30(12):5180–5192

    Article  CAS  Google Scholar 

  • Chaudhuri SK, Malodia L (2017) Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl Nanosci 7(8):501–512

    Article  CAS  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Leetters 15:15–22

    Article  CAS  Google Scholar 

  • Christian OD (2019) Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ 688:926–934

    Article  CAS  Google Scholar 

  • Cox M, Lehninger AL, Nelson DR (2000) Lehninger principles of biochemistry. Worth Publishers, New York

  • Cullen LG, Tilston EL, Mitchell GR, Collins CD, Shaw LJ (2011) Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82:1675–1682

    Article  CAS  Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Guyen OTN, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199

  • Das M, Sarkar D (2017) One-pot synthesis of zinc oxide-polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor. Ceram Int 43:11123–11131

    Article  CAS  Google Scholar 

  • Das S, Sen B, Debnath N (2015) Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ Sci Pollut Res 22(23):18333–18344

    Article  Google Scholar 

  • DaSilva Tourinho P (2015) Effects of metal-based nanoparticles on the terrestrial isopod Porcellionides pruinosus. Doctoral dissertation, Universidade de Aveiro (Portugal

  • Defez R, Andreozzi A, Dickinson M, Charlton A, Tadini L, Pesaresi P, Bianco C (2017) Improved drought stress response in alfalfa plants nodulated by an IAA overproducing Rhizobium strain. Front Microbiol 14:2466

    Article  Google Scholar 

  • Dietz KJ, Herth S (2011) Erratum to plant nanotoxicology. Trends Plant Sci 16:582–589

    Article  CAS  Google Scholar 

  • Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012a) Production of indole 3 acetic acid via the indole 3 acetamide pathway in the plant-beneficial bacterium, Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78:1404–1410

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012b) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26:913–924

    Article  CAS  Google Scholar 

  • Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ (2015) ZnO nanoparticles and root colonization by a beneficial pseudomonad influence metal response in bean (Phaseolus vulgaris). Nanotoxicol. 9:271–278

    Article  CAS  Google Scholar 

  • Dimkpa C, Bindraban P, Fugice J, Agyin-Birikorang S, Singh U, Hellums D (2017a) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev 37:5

    Article  CAS  Google Scholar 

  • Dimkpa CO, White JC, Elmer WH, Gardea-Torresdey J (2017b) Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J Agric Food Chem 65:8552–8559

    Article  CAS  Google Scholar 

  • Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2018) Exposure to weathered and fresh nanoparticle and ionic Zn in soil promotes grain yield and modulates nutrient acquisition in wheat (Triticum aestivum L.). J Agric Food Chem 66:9645–9656

    Article  CAS  Google Scholar 

  • Dimkpa CO, Singh U, Bindraban PS, Adisa IO, Elmer WH, Gardea-Torresdey JL, White JC (2019) Addition-omission of zinc, copper, and boron nano and bulk particles demonstrate element and size-specific response of soybean to micronutrients exposure. Sci Total Environ 665:606–616

    Article  CAS  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27

    Article  CAS  Google Scholar 

  • Doğaroğlu (2017) Effects of TiO2 and ZnO nanoparticles on germination and antioxidant system of wheat (Triticum aestivum l.). Applied Ecol. Environ Res 15:1499–1510

    Google Scholar 

  • Du WC, Sun YY, Ji R, Zhu JG, Wu JC, Guo HY (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agriculture soil. J Environ Monit 13:822–828

    Article  CAS  Google Scholar 

  • Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9:e111289

    Article  CAS  Google Scholar 

  • Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO (2019a) The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl Sci 9:499

    Article  CAS  Google Scholar 

  • Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO (2019b) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf 3:353–364

    Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Zad SS (2010) Evaluation of nanocomposite packaging containing Ag and ZnO NPs on shelf-life of fresh orange juice. Innovative Food Sci Emerg Technol 11:742–748

    Article  CAS  Google Scholar 

  • Espitia P, Otoni C 2016 Soares N. Zinc oxide nanoparticles for food packaging applications. Antimicrobial Food Packaging. Elsevier, 2016

  • Espitia PJP, Soares NDFF, Coimbra DR, De Andrade NJ, Cruz RS, Medeiros EA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  • Espitia PJP, Lissbrant S, Moyano-Tamara L (2018) Social and Cultural Perceptions Regarding Food Security and Health in the Departments of Bolivar and La Guajira, in the Caribbean Region of Colombia. J Hunger Environ Nutr 13(2):255–276. https://doi.org/10.1080/19320248.2017.1337533

  • European Chemicals Agency (2018) Literature study on the uses and risks of nanomaterials as pigments in the European Union. Helsinki, Finland, European Chemicals Agency

  • Fang J, Shan XQ, Wen B, Lin JM, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO), 2020 FAO Statistics Division. Available online: http://www.fao.org/faostat/en/#data/QC/visualize

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:e84441

    Article  CAS  Google Scholar 

  • Galstyan V, Bhandari M, Sberveglieri V, Sberveglieri G, Comini E (2018) Metal oxide nanostructures in food applications: quality control and packaging. Chemosensor 6:16

    Article  CAS  Google Scholar 

  • Gao J, Xu B (2011) Applications of nanomaterials inside cells. Nano Today 4:37–51

    Article  CAS  Google Scholar 

  • Gao X, Rodrigues SM, Spielman-Sun E, Lopes S, Rodrigues S, Zhang Y, Avellan A, Duarte RMBO, Duarte A, Casman EA, Lowry GV (2019) Effect of soil organicmatter, soil pH, andmoisture content on solubility and dissolution rate of CuO NPs in soil. Environ Sci Technol 53:4959–4967

  • García-Gómez (2018) Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community. Environ Sci Pollut Res 25:28140–28152

    Article  CAS  Google Scholar 

  • García-Gómez C, Babin M, Obrador A, Álvarez JM, Fernández MD (2014) Toxicity of ZnO Nanoparticles, ZnO Bulk, and ZnCl2 on Earthworms in a Spiked Natural Soil and Toxicological Effects of Leachates on Aquatic Organisms. Arch Environ Contam Toxicol 67:465–473. https://doi.org/10.1007/s00244-014-0025-7

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2018a) Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ 644:770–780

    Article  CAS  Google Scholar 

  • García-Gómez C, García S, Obrador AF, González D, Babín M, Fernández MD (2018b) Effects of aged ZnO NPs and soil type on Zn availability, accumulation and toxicity to pea and beet in a greenhouse experiment. Ecotoxicol Environ Saf 160:222–230

    Article  CAS  Google Scholar 

  • Ge Y (2014) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  Google Scholar 

  • Ge Y, Priester JH, van de Werfhorst LC, Schimel JP, Holden PA (2013) Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ Sci Technol 47:14411–14417

    Article  CAS  Google Scholar 

  • Godwin HA, Chopra K, Bradley KA, Cohen Y, Harthorn BH, Hoek EMV, Holden P, Keller AA, Lenihan HS, Nisbet RM, Nel AE (2009) The University of California center for the environmental impli- cations of nanotechnology. Environ Sci Technol 43:6453–6457

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organicmatter: a review of the state-of-the-art. Chemosphere 119:608–619

    Article  CAS  Google Scholar 

  • Gupta M, Sharma D 2019 Impact and current perspectives of zinc oxide nanoparticles on soil. In Nanotechnology for Agriculture (pp. 131-144). Springer, Singapore

  • He X, Hwang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J. Food and Drug Analysis 24:671–681

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  Google Scholar 

  • Heggelund LR, Diez Ortiz M, Lofts S, Lahive E, Jurkschat K, Cedergreen N, Spurgeon D, Svendsen C (2014) Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxic. 8:559–572

    Article  CAS  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aus J Crop Sci 8:612–624

    CAS  Google Scholar 

  • Hernandez-Sierra JF, Facundo R, Diana CCP, Fidel M, Alberto EM, Amaury JPG, Humberto T, Gabriel MC (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine Nanotechnol Biomed 4:237–240

    Article  CAS  Google Scholar 

  • Hirota K, Sugimoto M, Kato M, Tsukagoshi K, Tanigawa T, Sugimoto H (2010) Ceram Int 36:497–506

    Article  CAS  Google Scholar 

  • Hooper HL, Jurkschat K, Morgan AJ, Bailey J, Lawlor AJ, Spurgeon DJ, Svendsen C (2011) Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ Int 37:1111–1117

    Article  CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  CAS  Google Scholar 

  • Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591

    Article  CAS  Google Scholar 

  • Huang X, Li Y, Chen Y, Zhou H, Duan X, Huang Y (2013) Plasmonic and catalytic AuPd nano wheels for the efficient conversion of light into chemical energy. Angew Chem Int Ed Eng 52:6063–6067

    Article  CAS  Google Scholar 

  • Jacobson A, Doxey S, Potter M, Adams J, Britt D, McManus P, McLean J, Anderson A, 2018 Interactions between a plant probiotic and nanoparticles on plant responses related to drought tolerance. Indus. Biotechnol.14, 3

  • Jain S, Karmakar N, Shah A, Kothari D, Mishra S, Shimpi NG (2017) Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: effect of CSA doping and their structural, chemical, thermal and gas sensing behavior. Appl Surf Sci 396:1317–1325

    Article  CAS  Google Scholar 

  • Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 121:198–201

    Article  CAS  Google Scholar 

  • Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V (2016) Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Bot Lith 22:53–64

    Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  Google Scholar 

  • Josko I, Oleszczuk P (2013) Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92:91–99

    Article  CAS  Google Scholar 

  • Jośko I, Oleszczuk P, Dobrzyńska J, Futa B, Joniec J, Dobrowolski R (2019) Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma 352:204–212

    Article  CAS  Google Scholar 

  • Jośko I, Kusiak M, Oleszczuk P 2020 The chronic effects of CuO and ZnO nanoparticles on Eisenia fetida in relation to the bioavailability in aged soils. Chemosphere, 128982

  • Josko I, Dobrzynska J, Dobrowolski R, Kusiak M, Terpiłowski K (2020) The effect of pH and ageing on the fate of CuO and ZnO nanoparticles in soils. Sci Total Environ 721:137771

    Article  CAS  Google Scholar 

  • Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540

    Article  CAS  Google Scholar 

  • Kang S, Zhu Y, Chen M, Zeng G, Li Z, Zhang C, Xu P (2019) Can microbes feed on environmental carbon nanomaterials? Nano Today 25:10–12

    Article  Google Scholar 

  • Khalkhal K, Lajayer BA, Ghorbanpour M (2020) An overview on the effect of soil physicochemical properties on the immobilization of biogenic nanoparticles. In: Biogenic Nano-Particles and their Use in Agro-Ecosystems. Singapore, Springer Science and Business Media LLC, pp 133–160

  • Khan R, Inam MA, Park DR, Zam Zam S, Shin S, Khan S, Akram M, Yeom IT (2018) Influence of organic ligands on the colloidal stability and removal of ZnO nanoparticles from synthetic waters by coagulation. Processes 6(9):170

    Article  CAS  Google Scholar 

  • Kim S, Kimb J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn+2 on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. J Chem Ecol 27:49–55

    Article  CAS  Google Scholar 

  • Kim I, Viswanathan K, Kasi G, Thanakkasaranee S, Sadeghi K, Seo J 2020 ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Reviews International, 1-29

  • Kool PL, Ortiz MD, van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719

    Article  CAS  Google Scholar 

  • Kool PL, Ortiz MD, Lofts S, van Gestel CAM (2013) The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil. Environ Toxicol Chem 32:2349–2355

    Article  CAS  Google Scholar 

  • Kool PL, Rupp S, Lofts S, Svendsen C, Gestel CAM (2014) Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida. Ecotoxicol Environ Saf 108:9–15

    Article  CAS  Google Scholar 

  • Kumar LY (2015) Role and adverse effects of nanomaterials in food technology. J Toxicol Health 2:2

    Article  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51(10):1872–1881

    Article  CAS  Google Scholar 

  • Lead JR, Batley GE, Alvarez PJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K (2018) Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review. Environ Toxicol Chem 37(8):2029–2063

    Article  CAS  Google Scholar 

  • Lee CW, Mahendar S, Zodrow K, Li D, Tsai Y, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  Google Scholar 

  • Lee CS, Kim ID, Lee JH (2013) Selective and sensitive detection of trimethylamine using ZnO–In2O3 composite nanofibers. Sensors Actuators B Chem 181:463–470

    Article  CAS  Google Scholar 

  • Legg BA, Zhu M, Comolli LR, Gilbert B, Banfield JF (2014) Impacts of ionic strength on three-dimensional nanoparticle aggregate structure and consequences for environmental transport and deposition. Environ Sci Technol 48:13703–13710

    Article  CAS  Google Scholar 

  • Li M, Zhu L, Lin D (2011a) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    Article  CAS  Google Scholar 

  • Li X, Li W, Jiang Y (2011b) Effect of ZnO NPs-coated active packaging on quality of fresh-cut Fuji’ apple. Int J Food Sci Technol 46:1947–1955

    Article  CAS  Google Scholar 

  • Li M, Lin D, Zhu L (2013) Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102

    Article  CAS  Google Scholar 

  • Li M, Yang Y, Xie J, Xu G, Yu Y (2019) In-vivo and in-vitro tests to assess toxic mechanisms of nano ZnO to earthworms. Sci Total Environ 687:71–76. https://doi.org/10.1016/j.scitotenv.2019.05.476

    Article  CAS  Google Scholar 

  • Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  Google Scholar 

  • Lipovsky A, Tzitrinovich Z, Friedmann H, Applerot G, Gedanken A, Lubart R (2009) Study of visible light-induced ROS generation by nanoparticles of ZnO. J Phys Chem C 113:15997–16001

    Article  CAS  Google Scholar 

  • Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011a) Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22:105101

    Article  CAS  Google Scholar 

  • Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011b) Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnol. 22:101–105

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Liu LJ, Chang EH, Fan MM, Wang ZQ, Yang JC (2011) Effects of potassium and calcium on root exudates and grain quality during grain filling. Acta Agron Sin 37:661–669

    CAS  Google Scholar 

  • Liu J, Hu J, Liu M, Cao G, Gao J, Luo Y (2016) Migration and characterization of nano-zinc oxide from polypropylene food containers. Am J Food Technol 11:159–164

    Article  CAS  Google Scholar 

  • Liu T, Chen X, Gong X, Lubbers IM, Jiang Y, Feng W, Li X, Whalen JK, Bonkowski M, Griffiths BS, Hu F, Liu M (2019) Earthworms coordinate soil biota to improve multiple ecosystem functions Curr Biol 29:3420–3429. https://doi.org/10.1016/j.cub.2019.08.045

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea TJL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  CAS  Google Scholar 

  • Ma H, Williams PL, Diamon SA (2013) Ecotoxicity of manufactured ZnO nanoparticles: a review. Environ Pollut 172:76–85

    Article  CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of ZnO NPs particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7

    Article  CAS  Google Scholar 

  • Mahdi KNM, Peters R, van der Ploeg M, Ritsema C, Geissen V (2018) Tracking the transport of silver nanoparticles in soil: a saturated column experiment. Water Air Soil Pollut 229. https://doi.org/10.1007/s11270-018-3985-9

  • Manzo S, Rocco A, Carotenuto R, Picione FD, Miglietta ML, Rametta G, Di G (2011) Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ Sci Pollut Res 18:756–763

    Article  CAS  Google Scholar 

  • Marcous A, Rasouli S, Ardestani F (2017) Low-density polyethylene films loaded by titanium dioxide and zinc oxide nanoparticles as a new active packaging system against Escherichia coli O157: H7 in fresh calf minced meat. Packag Technol Sci 30:693–701

    Article  CAS  Google Scholar 

  • Mashayekhi H, Carotenuto R, Picione FD (2008) Metal oxide nanoparticles show toxicity to bacteria, preprints of extended abstracts. Proceedings published by the American Chemical Society 48:1

    Google Scholar 

  • Medina-Velo IA, Dominguez OE, Ochoa L, Barrios AC, Hernández-Viezcas JA, White JC, Peralta-Videa AR, Gardea-Torresdey JL (2017) Nutritional quality of bean seeds harvested from plants grown in different soils amended with coated and uncoated zinc oxide nanomaterials. Environ Sci Nano 4:2336–2347

    Article  CAS  Google Scholar 

  • Meng F, Zheng H, Sun Y, Li M, Liu J (2017) Trimethylamine sensors based on Au-modified hierarchical porous single-crystalline ZnO nanosheets. Sensors. 17:1478

    Article  CAS  Google Scholar 

  • Mizielińska M, Kowalska U, Jarosz M, Sumińska P, Landercy N, Duquesne E (2018a) The effect of UV aging on antimicrobial and mechanical properties of PLA films with incorporated zinc oxide nanoparticles. Int J Environ Res Public Health 15(4):794

    Article  CAS  Google Scholar 

  • Mizielińska M, Kowalska U, Jarosz M, Sumińska P (2018b) A comparison of the effects of packaging containing nano ZnO or polylysine on the microbial purity and texture of Cod (Gadus morhua) fillets. Nanomaterials 8:158

    Article  CAS  Google Scholar 

  • Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–189

    Article  CAS  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138

    Article  CAS  Google Scholar 

  • Muna M, Blinova I, Kahru A, Vrcek IV, Pem B, Orupõld K, Heinlaan M (2018) Combined effects of test media and dietary algae on the toxicity of CuO and ZnO nanoparticles to freshwater microcrustaceans Daphnia magna and Heterocypris incongruens: Food for Thought. Nanomaterials 9:23

    Article  CAS  Google Scholar 

  • Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M (2017a) Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag Shelf Life 11:106–114

    Article  Google Scholar 

  • Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M, Coma V (2017b) Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int J Biol Macromol 99:530–538

    Article  CAS  Google Scholar 

  • Noshirvani N, Ghanbarzadeh B, Rezaei Mokarram R, Hashemi M (2017c) Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO nps nanocomposite for increasing the shelf life of bread. Food Packag. Shelf Life 11:106–114

    Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

  • Orou SFC, Hang KJ, Thien MT, Ying YL, Diem NDN, Goh BH, Pung SY, Pung YF (2018) Antibacterial activity by ZnO nanorods and ZnO nanodisks: a model used to illustrate “nanotoxicity threshold”. J Ind Eng Chem 62:333–340

    Article  CAS  Google Scholar 

  • Oun AA, Rhim JW (2017) Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll 67:45–53

    Article  CAS  Google Scholar 

  • Panieri E, Santoro M (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253. https://doi.org/10.1038/cddis.2016.105

  • Parihar V, Raja M, Paulose R (2018) A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Rev Adv Mater Sci 53(2):119–130

    Article  CAS  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Paschke MW, Perry LG, Redente EF (2006) Zinc toxicity thresholds for reclamation forb species. Water Air Soil Pollut 170:317–330

    Article  CAS  Google Scholar 

  • Peng C, Xu C, Liu Q, Sun L, Luo Y, Shi J (2017a) Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants. Environ Sci Technol 51:4907–4917

    Article  CAS  Google Scholar 

  • Peng C, Xu C, Liu QL, Sun LJ, Luo YM, Shi JY (2017b) Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants. Environ Sci Technol 51:4907–4917

    Article  CAS  Google Scholar 

  • Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Liu Y, Shao B, Liang Q, Tang W, Yuan X (2020) Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ Int 134:105298

    Article  CAS  Google Scholar 

  • Pipan-Tkalec Z, Drobne D, Jemec A, Romih T, Zidar P, Bele M (2010) Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicol. 269:198–203

    Article  CAS  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  CAS  Google Scholar 

  • Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y (2019) Energy storage: the future enabled by nanomaterials. Science 366(6468)

  • Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. PNAS. 109:2451–2456

    Article  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  CAS  Google Scholar 

  • Rahmatpour S, Shirvani M, Mosaddeghi MR, Nourbakhsh F, Bazarganipour M (2017) Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils. Geoderma 285:313–322

    Article  CAS  Google Scholar 

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018a) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environmental Nanotechnology, Monitoring & Management 9:76–84

    Article  Google Scholar 

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018b) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotech Monitoring Manag 9:76–84

    Article  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2014) Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 4:93

    Article  CAS  Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 7:1584–1594

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC, Biswas P (2016) Enhancing the mobilization of native phosphorus in mung bean rhizosphere using ZnO nanoparticles synthesized by fungi. J Agric Food Chem 64:3111–3118

    Article  CAS  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Global Bios 3:415–422

    Google Scholar 

  • Rashid MI, Shahzad T, Shahid M, Imran M, Dhavamani J, Ismail IMI, Basahi JM, Almeelbi T (2017a) Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sci Rep 7:41965

    Article  CAS  Google Scholar 

  • Rashid MI, Shahzad T, Shahid M, Ismail IMI, Shah GM, Almeelbi T (2017b) Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. J Hazard Mater 324:298–305

    Article  CAS  Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol ApplSci 3:467–473

    CAS  Google Scholar 

  • Rather JA, Pilehvar S, Wael KA (2013) Biosensor fabricated by incorporation of a redox mediator into a carbon nanotube/nafion composite for tyrosinase immobilization: detection of matairesinol, an endocrine disruptor. Analyst. 138:204–210

    Article  CAS  Google Scholar 

  • Raya S, Hassan M, Farroh K, Hashim S, Salaheldin T 2016 Zinc oxide nanoparticles fortified biscuits as a nutritional supplement for zinc deficient rats. J. Nanomed Res. 4

  • Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Lessons learned: are engineered nanomaterials toxic to terrestrial plants? Sci Total Environ 568:470–479

    Article  CAS  Google Scholar 

  • Reshma V, Mohanan P (2017) Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells. Colloids Surf B: Biointerfaces 157:182–190

    Article  CAS  Google Scholar 

  • Rizwan MS, Ali MF, Qayyum YS, Ok M, Adrees M, Ibrahim M, Zia-ur-Rehman M, Farid, Abbas F (2016) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review, J. Hazard. Mater

  • Sarapulova O, Sherstiuk V, Shvalagin V, Kukhta A (2015) Photonics and nanophotonics and information and communication technologies in modern food packaging. Nanoscale Res Lett 10:229

    Article  Google Scholar 

  • Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F (2015) Understanding the fate and biological effects of Ag and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19

    Article  CAS  Google Scholar 

  • Scown TM, van Aerle R, Tyler CR (2010) Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670

    Article  CAS  Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Ann West Univ Timisoara Ser Biol 16:73

    Google Scholar 

  • Seleiman MF, Almutairi KF, Alotaibi M, Shami A, Alhammad BA, Battaglia ML (2021) Nano-fertilization as an emerging fertilization technique: why can modern agriculture benefit from its use? Plants 10:2

    Article  CAS  Google Scholar 

  • Shah MA, Towkeer A, 2010 Narosa Publishing House, New Delhi

  • Sharma K, Kumar M, Bhalla V (2015) Aggregates of the pentacenequinone derivative as reactors for the preparation of Ag@ Cu 2 O core–shell NPs: an active photocatalyst for Suzuki and Suzuki type coupling reactions. Chem Commun 51(63):12529–12532

    Article  CAS  Google Scholar 

  • Sheikh M, Pazirofteh M, Dehghani M, Asghari M, Rezakazemi M, Valderrama C Cortina JL, 2019 Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. Chemical Engineering Journal, p.123475

  • Sheteiwy MS, Guan Y, Cao D, Li J, Nawaz A, Hu Q, Hu W, Ning M, Hu J (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under ZnO NPs stress. Sci Rep 5:14278

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Fu Y, Hu Q, Nawaz A, Guan Y, Zhan L, Huang Y, Hu J (2016) Seed priming with polyethylene glycol induces antioxidative defense and metabolic performance of rice under ZnO NPs stress. Environ Sci Pollut Res 23:19989–20002

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Dong Q, An J, Song W, Guan Y, He F, Huang Y, Hu J 2017. Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regul. 1–15

  • Shi J, Ye J, Fang H, Zhang S, Xu C (2018) Effects of copper oxide nanoparticles on paddy soil properties and components. Nanomaterials 8:839

    Article  CAS  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV (2010) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc J 75:365–377

    Article  CAS  Google Scholar 

  • Siddiqi KS, Rahman AU, Tajuddin HA (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141

    Article  CAS  Google Scholar 

  • Singh S, Husen A (2019) Role of nanomaterials in the mitigation of abiotic stress in plants. Nanomater. Plant Potential, pp 441–471

  • Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol 8:1501

    Article  Google Scholar 

  • Singh A, Singh N, Afzal S, Singh T, Hussain I (2018) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci 53:185–201

    Article  CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Lett 7:219–242

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-Dependent Phytotoxicity of Nanoparticles to Plants. Environ Sci Technol  43(24):9473–9479. https://doi.org/10.1021/es901695c

  • Stewart J, Hansen T, McLean JE, McManus P, Das S, Britt DW, Anderson AJ, Dimkpa CO (2015) Salts affect the interaction of ZnO or CuO nanoparticles with wheat. Environ Chem Toxicol 34:2116–2125

    Article  CAS  Google Scholar 

  • Świątek ZM, van Gestel CAM, Bednarska AJ (2017) Toxicokinetics of zinc-oxide nanoparticles and zinc ions in the earthworm Eisenia andrei. Ecotoxicol Environ Saf 143:151–158. https://doi.org/10.1016/j.ecoenv.2017.05.027

    Article  CAS  Google Scholar 

  • Taha MR, Taha OME (2012) Influence of nano-material on the expansive and shrinkage soil behavior. J Nanopart Res 14:1–13

  • Taheri M, Qarache HA, Qarache AA, Yoosefi M (2010) The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). STEM Fellowship J 1:17–20

    Article  Google Scholar 

  • Tay CY, Cai P, Setyawati MI, Fang W, Tan LP, Hong CHL, Chen X, Leong DT (2014) Nanoparticles strengthen intracellular tension and retard cellular migration. Nano Lett 14:83–88

    Article  CAS  Google Scholar 

  • Tesfahunegn GB, Gebru TA (2020) Variation in soil properties under long-term irrigated and non-irrigated cropping and other land-use systems in Dura Catchment, Northern Ethiopia. PLoS One 15:e0222476

    Article  CAS  Google Scholar 

  • Tesh SJ, Scott TB (2014) Nanocomposites for water remediation: a review. Advanced Mat 26:6056–6068

    Article  CAS  Google Scholar 

  • Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior and effects on soil invertebrates. Environ Toxicol Chem 31:679–692

    Article  CAS  Google Scholar 

  • Tourinho PS, van Gestel CAM, Lofts S, Soares AMVM, Loureiro S (2013) Influence of soil pH on the toxicity of zinc oxide nanoparticles to the terrestrial isopod Porcellionides pruinosus. Environ Toxicol Chem 32:2808–2815

    Article  CAS  Google Scholar 

  • Usman M, Muhammad F, Abdul W, Nawaz A, Cheema S, Rehman H, Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ:721–137778

  • Venkatasubbu GD, Baskar R, Anusuya T, Seshan CA, Chelliah R (2016) Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids Surf. B Biointerfaces 148:600–606

    Article  CAS  Google Scholar 

  • Voet D, Voet JG, Pratt CW (2006) Fundamentals of biochemistry: life at the molecular level. Wiley, New York

  • Vottori-Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity ofmetal oxide (CeO2,Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94

    Article  CAS  Google Scholar 

  • Waalewijn-Kool PL, Klein K, Forniés RM, van Gestel CA (2014) Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida. Ecotoxicology 23(9):1629–1637

    Article  CAS  Google Scholar 

  • Wang H, Du LJ, Song ZM, Chen XX (2013) Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food. Nanomedicine (London) 8:2007–2025

    Article  CAS  Google Scholar 

  • Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2016a) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants − a soil microcosm experiment. Chemosphere. 147:88–97

    Article  CAS  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016b) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712

    Article  CAS  Google Scholar 

  • Watson JL, Fang T, Dimpka CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112

    Article  CAS  Google Scholar 

  • Wong SW, Leung PT, Djurisic A, Leung KM (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618

    Article  CAS  Google Scholar 

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scaleTiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452

    Article  CAS  Google Scholar 

  • Ya Y, Jiang C, Li T, Liao J, Fan Y, Wei Y, Yan F, Xie L (2017) A zinc oxide nanoflower-based electrochemical sensor for trace detection of sunset yellow. Sensors (Basel, Switzerland) 17:–545

  • Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169

    Article  CAS  Google Scholar 

  • Yang KY, Doxey S, McLean JE, Britt D, Watson A, Al Qassy D, Jacobson A, Anderson AJ (2018) Remodeling of root morphology by CuO and ZnO nanoparticles: effects on drought tolerance for plants colonized by a beneficial pseudomonad. Bot. 96:175–186

    Article  CAS  Google Scholar 

  • Youssef AM, El-Sayed SM, El-Sayed HS, Salama HH, Dufresne A (2016) Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym 151:9–19

    Article  CAS  Google Scholar 

  • Yuan L, Wang Y, Wang J, Xiao H, Liu X (2014) Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line. Toxicol Lett 225:294–304

    Article  CAS  Google Scholar 

  • Zambrano-Zaragoza ML, Mercado-Silva E, Gutierrez-Cortez E, Castano-Tostado E, Quintanar-Guerrero D (2011) Optimization of nanocapsules preparation by the emulsion diffusion method for food applications. LWT-Food Sci Tech 44:1362–1368

    Article  CAS  Google Scholar 

  • Zhang L, Ding Y, Povey M, York D (2008) ZnO nanofluids-apotential antibacterial agent. Prog Nat Sci 18:939–944

    Article  CAS  Google Scholar 

  • Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015a) Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22:11109–11117

    Article  CAS  Google Scholar 

  • Zhang Z, Platnick S, Ackerman AS, Cho HM 2015b In light scattering reviews 9: Light Scattering and Radiative Transfer. A.A. Kokhanovsky, Ed. Springer Praxis. 135–165

  • Zhang W, Bao S, Fang T (2016) The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae. Sci Rep 6(1):1–11

    CAS  Google Scholar 

  • Zhang T, Sun H, Lv Z, Cui L, Mao H, Kopittke PM (2018) Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field grown winter wheat. J Agric Food Chem 66:2572–2579

    Article  CAS  Google Scholar 

  • Zhang W, Long J, Li J, Zhang M, Ye X, Chang W, Zeng H (2020) Effect of metal oxide nanoparticles on the chemical speciation of heavy metals and micronutrient bioavailability in paddy soil. Int J Environ Res Public Health 17:2482. https://doi.org/10.3390/ijerph17072482

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8

    Article  CAS  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013a) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impacts 15:260–266

    Article  CAS  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B (2013b) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impacts 15:260–266

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas CM, Sun JA, Niu Y, Servin G, Nunez A, Duarte-Gardea JE, Gardea-Torresdey MJL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    Article  CAS  Google Scholar 

  • Zhao X, Zhou L, Rajoka MSR, Yan L (2018) Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 38:817–835

    Article  CAS  Google Scholar 

Download references

Availability of data and materials

Not applicable.

Funding

The authors are grateful for the China Post-Doctoral Science Foundation Fund [2019M6617770], Jiangsu Agriculture Science and Technology Innovation Fund [CX (15)1005], Shuangchuang Talent Plan of Jiangsu Province, and the Excellent Scientist Plan of JAAS.

Author information

Authors and Affiliations

Authors

Contributions

Mohamed S. Sheteiwy, Hiba Shaghaleh, and Yousef Alhaj Hamoud provided the idea for the article; Mohamed S. Sheteiwy, Hiba Shaghaleh, Yousef Alhaj Hamoud, Paul Holford, Hongbo Shao, Weicong Qi, Muhammad Zaffar Hashmi, and Tianow Wu performed the literature search and data analysis; Hiba Shaghaleh, Yousef Alhaj Hamoud, and Mohamed S. Sheteiwy prepared the original draft of the work; Hiba Shaghaleh and Yousef Alhaj Hamoud critically revised the work.

Corresponding authors

Correspondence to Hiba Shaghaleh, Yousef Alhaj Hamoud or Hongbo Shao.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheteiwy, M.S., Shaghaleh, H., Hamoud, Y.A. et al. Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality. Environ Sci Pollut Res 28, 36942–36966 (2021). https://doi.org/10.1007/s11356-021-14542-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14542-w

Keywords

Navigation