Skip to main content
Log in

Mercury resistance and volatilization by oil utilizing haloarchaea under hypersaline conditions

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The hydrocarbon utilizing haloarchaea, Haloferax (two strains), Halobacterium and Halococcus from a hypersaline coastal area of the Arabian Gulf, had the potential for resistance and volatilization of Hg2+. Individual haloarchaea resisted up to between 100 and 200 ppm HgCl2 in hydrocarbon free media with salinities between 1 and 4 M NaCl, but only up to between 20 and 30 ppm in a mineral medium containing 3 M NaCl, with 0.5% (w/v) crude oil, as a sole source of carbon and energy. Halococcus and Halobacterium volatilized more mercury than Haloferax. The individual haloarchaea consumed more crude oil in the presence of 3 M NaCl than in the presence of 2 M NaCl. At both salinities, increasing the HgCl2 concentration in the medium from 0 to 20 ppm resulted in decreasing the oil consumption values by the individual haloarchaea. However, satisfactory oil consumption still occurred in the presence of 10 ppm HgCl2. It was concluded that haloarchaea with the combined potential for mercury resistance and volatilization and hydrocarbon consumption could be useful in removing toxic mercury forms effectively from oil free, mercury contaminated, hypersaline environments, and mercury and oil, albeit less effectively, from oily hypersaline environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Dopson M, Wexler M, Sawers RG, Stemmler A, Rosen BP, Bond PL (2007) Extreme arsenic resistance by the acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extremophiles 11:425–434

    Article  CAS  PubMed  Google Scholar 

  • Barkay T (1987) Adaptation of aquatic microbial communities to Hg2+ stress. Applied Environ Microbiol 53:2725–2732

    CAS  Google Scholar 

  • Barkay T, Gillman M, Turner RR (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol 63:4267–4271

    CAS  PubMed  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Kritee K, Boyd E, Geesey G (2010) A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ Microbiol doi:10.1111/j.1462-2920.2010.02260.x

  • Barringer JL, Szabo Z, Kauffman LJ, Barringer TH, Stackelberg PE, Ivahnenko T, Rajagopalan S, Krabbenhoft DP (2005) Mercury concentrations in water from an unconfined aquifer system, New Jersey coastal plain. Sci Tot Environ 346:169–183

    Article  CAS  Google Scholar 

  • Barringer JL, Szabo Z, Schneider D, Atkinson WD, Gallagher RA (2006) Mercury in ground water, septage, leach-field effluent, and soils in residential areas, New Jersey coastal plain. Sci Tot Environ 361:144–162

    Article  CAS  Google Scholar 

  • Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263

    Article  CAS  Google Scholar 

  • Chiu HH, Shieh WY, Lin SY, Tseng CM, Chiang P, Dobler IW (2007) Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Sys Evolut Microbiol 57:1209–1216

    Article  CAS  Google Scholar 

  • Crespo-Medina M, Chatziefthimiou AD, Bloom NS, Luther GW III, Wright DD, Reinfelder JR, Vetriani C, Barkay T (2009) Adaptation of chemosynthetic microorganisms to elevated mercury concentrations in deep-sea hydrothermal vents. Limnol Oceanogr 54:41–49

    CAS  Google Scholar 

  • Hahne HCH, Kroontje W (1973) Significance of the pH and chloride concentration on behavior of heavy metal pollutants: Hg(II), Cd (II), Zn (II), and Pb(II). J Environ Qual 2:444–450

    Article  CAS  Google Scholar 

  • Han FX, Patterson WD, Xia Y, Sridhar BBM, Su Y (2006) Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study. Water Air Soil Pollut 170:161–171

    Article  CAS  Google Scholar 

  • Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaeobacteria. Microbiology 60:596–601

    Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682

    Article  CAS  PubMed  Google Scholar 

  • Mevarech M, Werczberger R (1985) Genetic transfer in Halobacterium volcanii. J Bacteriol 162:461–462

    CAS  PubMed  Google Scholar 

  • Moore MJ, Distefano MD, Walsh CT, Schicring N, Pai EF (1989) Purification, crystallization, and preliminary X-ray diffraction studies of the flavoenzyme mercuric ion reductase from Bacillus sp. strain RC607. J Biol Chem 264:14386–14388

    CAS  PubMed  Google Scholar 

  • Moore MJ, Miller SM, Walsh CT (1992) C-terminal cysteines of Tn 501 mercuric ion reductase. Biochemistry 31:1677–1685

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    CAS  PubMed  Google Scholar 

  • Oren A, Gurevich P, Azachi M, Hents Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398

    Article  CAS  Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262

    Article  CAS  PubMed  Google Scholar 

  • Pahan K, Gachhui R, Ray S, Chaudhuri J, Mandal A (1990) Characteristics of mercury resistant bacteria from West Bengal rivers. Indian J Microbiol 30:35–44

    Google Scholar 

  • Pahan K, Ray S, Gachhui R, Chaudhuri J, Mandal A (1991) Volatilization of mercury compounds and utilization of various aromatic compounds by a broad-spectrum resistant Bacillus pasteurii strain. Bull Environ Contam Toxicol 46:591–598

    Article  CAS  PubMed  Google Scholar 

  • Pahan K, Ghosh DK, Chaudhuri J, Gachhui R, Ray S, Mandal A (1995) Mercury detoxifying enzymes within endospores of a broad-spectrum mercury resistant Bacillus pasteurii strain DR2. J Biosci 20:83–88

    Article  CAS  Google Scholar 

  • Pieper D, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  CAS  PubMed  Google Scholar 

  • Radwan SS (2008) Microbiology of oil-contaminated desert soils and coastal areas in the Arabian Gulf. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology vol 13. Springer-Verlag, Heidelberg, pp 275–297

    Chapter  Google Scholar 

  • Ramamoorthy S, Kushner DJ (1975) Binding of mercuric and other heavy metal ions by microbial growth media. Microbiol Ecol 2:162–176

    Article  CAS  Google Scholar 

  • Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49:713–721

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E (2006) Hydrocarbon-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokarayotes, a Handbook on the Biology of Bacteria, vol 2, 3rd edn edn. Springer, Berlin, pp 564–577

    Google Scholar 

  • Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P (2004) Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 486:427–437

    Article  Google Scholar 

  • Schottel J (1978) The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J Biol Chem 12:4341–4349

    Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  PubMed  Google Scholar 

  • Sorkhoh NA, Ali N, Dashti N, Al-Mailem DM, Eliyas M, Radwan SS (2010) Soil bacteria with the combined potential for oil-utilization nitrogen-fixation and mercury-resistance. Int Biodetrio Biodeg 64:226–231

    Article  CAS  Google Scholar 

  • Summer AO, Silver S (1978) Microbial transformation of metals. Annu Rev Microbiol 32:37–672

    Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an incontaminated hypersaline pond (Camarque, France). Extremophiles 14:225–231

    Article  CAS  PubMed  Google Scholar 

  • Walker JD, Colwell RR (1976) Oil, mercury, and bacterial interactions. Environ Sci Technol 10:1145–1147

    Article  CAS  Google Scholar 

  • Wang Y, Moore M, Levinson HS, Silver S, Walsh C, Mahler I (1989) Nucleotide sequence of a chromosomal mercury resistance determinant from Bacillus sp. with braod-spectrum mercury resistance. J Bacteriol 171:83–92

    CAS  PubMed  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasDarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194

    Article  CAS  PubMed  Google Scholar 

  • Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40:6690–6696

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work has been supported by University of Kuwait, Research grant SL 08/07. Thanks are due to the SAF unit, Kuwait University for their help in GLC and ICP-MS analysis through GS 02/01 and GS 01/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Radwan.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Mailem, D.M., Al-Awadhi, H., Sorkhoh, N.A. et al. Mercury resistance and volatilization by oil utilizing haloarchaea under hypersaline conditions. Extremophiles 15, 39–44 (2011). https://doi.org/10.1007/s00792-010-0335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-010-0335-2

Keywords

Navigation