Skip to main content

Advertisement

Log in

Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach

  • Bio/processes for Sustainable Environment and Clean Energy
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microalgal biomass–based biofuels are a promising alternative to fossil fuels. Microalgal biofuels’ major obstacles are the water and carbon sources for their cultivation and biomass harvest from the liquid medium. To date, an economically viable process is not available for algal based biofuels. The circular bioeconomy is an attractive concept for reuse, reduce, and recycle resources. The recovery of nutrients from waste and effluents by microalgae could significantly impact the escalating demands of energy and nutraceutical source to the growing population. Wastewaters from different sources are enriched with nutrients and carbon, and these resources can be recovered and utilized for the circular bioeconomy approach. However, the utilization of wastewaters and waste seems to be an essential strategy for mass cultivation of microalgae to minimizing freshwater consumption, carbon, nutrients cost, nitrogen, phosphorus removal, and other pollutants loads from wastewater and generating sustainable biomass for value addition for either biofuels or other chemicals. Hence, the amalgamation of wastewater treatment with the mass cultivation of microalgae improved the conventional treatment process and environmental impacts. This review provides complete information on the latest progress and developments of microalgae as potential biocatalyst for the remediation of wastewaters and waste carbon to recover resources through biomass with metabolites for various industrial applications and large-scale cultivation in wastewaters, and future perspectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not Applicable.

References

  • Abid A, Saidane F, Hamdi M (2017) Feasibility of carbon dioxide sequestration by Spongiochloris sp microalgae during petroleum wastewater treatment in airlift bioreactor. Bioresour Technol 234:297–302

    Article  CAS  Google Scholar 

  • Abomohra AEF, Eladel H, El-Esawi M, Wang S, Wang Q, He Z, Feng Y, Shang H, Hanelt D (2018) Effect of lipid free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: innovative waste recycling for extraordinary lipid production. Bioresour Technol 249:992–999

    Article  CAS  Google Scholar 

  • Adnan MA, Xiong Q, Hidayat A, Hossain MM (2019) Gasification performance of Spirulina microalgae- a thermodynamic study with tar formation. Fuel 241:372–381

    Article  CAS  Google Scholar 

  • Ahmed F, Khan AU, Yasar A (2013) Trasesterification of oil extracted from different species of algae for biodiesel production. Afr J Environ Sci Technol 2(6):358–364

    Google Scholar 

  • Aida TM, Nonaka T, Fukuda S, Kujiraoka H, Kumagai Y, Maruta R, Ota M, Suzuk I, Watanabe MM, Inomata H, Smith RL (2016) Nutrient recovery from municipal sludge for microalgae cultivation with two step hydrothermal liquefaction. Algal Res 18:61–68

    Article  Google Scholar 

  • Ambat I, Tang WZ, Sillanpa M (2019) Statistical analysis of sustainable production of algal biomass from waste water treatment process. Biomass Bioenergy 120:471–478

    Article  CAS  Google Scholar 

  • Arias DM, Uggetti E, Garcia-galan MJ, Garcia J (2017) Cultivation and selection of cyanobacteria in a closed photobioreactor used for secondary effluent and digestate treatment. Sci Total Environ 587:157–167

    Article  CAS  Google Scholar 

  • Banu JR, Preeti KS, Gunasekaran M, Kumar G (2020) Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol 302:122822

    Article  CAS  Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Fresh water and marine microalgae sequestering of CO2 at different C and N concentrations-response surface methodology analysis. Energy Conver Manage 50:262–267

    Article  CAS  Google Scholar 

  • Brar A, Kumar M, Vivekanand V, Pareek N (2019) Phycoremediation of textile effluent contaminated water bodies employing microalgae: nutrient sequestration and biomass production. Int J Environ Sci Technol 16:7757–7768

    Article  CAS  Google Scholar 

  • Brenna JT, Carson SE (2014) Docosahexaenoic acid and human brain development: evidence that a dietary supply is needed for optimal development. J Human Evol 77:99–106

    Article  Google Scholar 

  • Cabanelas IT, Ruiz J, Arbib Z, Chinalia FA, Garrido-Pérez C, Rogalla F, Nascimento IA, Perales JA (2013) Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour Technol 131:429–436

  • Cai T, Ge X, Park SY, Li Y (2013) Comparison of Synechocystis sp., PCC 6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluents. Bioresour Technol 144:255–260

    Article  CAS  Google Scholar 

  • Chacon-Lee TL, Gonzalez-Marino GE (2010) Microalgae for healthy food possibilities and challenges. Compr Rev Food Sci Food Saf 9(6):655–675

    Article  CAS  Google Scholar 

  • Chang G, Gao N, Tian G, Wu Q, Chang M, Wang X (2013) Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. 31 with constant high oxygen transfer coefficient. Bioresour Technol 14:400–406

    Article  CAS  Google Scholar 

  • Chang KJL, Paul H, Nichols PD, Koutoulis A, Blackburn SI (2015) Australian thraustochytrids: potential production of dietary long chain omega-3 oils using crude glycerol. J Funct Foods 19:810–820

    Article  CAS  Google Scholar 

  • Chang HX, Fu Q, Huang Y, Xia A, Liao Q, Zhu X, Zheng YP, Sun CH (2016) An annular photobioreactor with ion-exchnage membrane for non-touch microalgae cultivation with wastewater. Bioresour Technol 219:668–676

    Article  Google Scholar 

  • Cheah WY, Show PL, Chang JS, Liang TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas containing CO2 by microalgae. Bioresour Technol 184:190–201

    Article  CAS  Google Scholar 

  • Chen H, Burns L (2006) Environmental analysis of textile products. Cloth Text Res 24:248–261

    Article  Google Scholar 

  • Chen YH, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel derived crude glycerol. Biotechnol Lett 33(10):1973–1983

    Article  CAS  Google Scholar 

  • Chen P, Chen P, Xie QL, Addy M, Zhou W, Liu Y, Wang Y, Heng Y, Li K, Ruan R (2016) Utilization of municipal solid and liquid wastes for bioenergy and plastic production. Bioresour Technol 215:163–172

    Article  CAS  Google Scholar 

  • Cheriaa J, Bettaieb F, Denden I, Bakhrouf A (2009) Characterization of new algae isolated from textile wastewater plant. Int J Food Agric Environ 7(3–4):700–704

    CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Cho S, Lee N, Park S, Yu J, Luong TT, Oh YK, Lee T (2013) Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresour Technol 131:515–520

    Article  CAS  Google Scholar 

  • Cole AJ, Neveux N, Whelan A, Morton J, Vis M, de Nys R, Paul NA (2016) Adding value to the treatment of municipal wastewater through the intensive production of freshwater macroalgae. Algal Res 20:100–109

  • Costa JAV, de Freitas BCB, Lisboa CR, Santos TD, de Fraga Brusch LR, de Morais MG (2019) Microalgal biorefinery from CO2 and effect under blue economy. Renew Sust Energ Rev 99:58–65

    Article  Google Scholar 

  • Cuellar-Franca RM, Azapagic A (2015) Carbon capture storage and utilization technologies: a critical analysis and comparison of their life cycle environment impacts. J CO2Util 9:82–102

    CAS  Google Scholar 

  • Daneshvar E, Zarrinmehr MJ, Koutra E, Kornaros M, Farhadian O, Bhatnagar A (2019) Sequential cultivation of microalgae in raw and recycled wastewater: microalgal growth, wastewater treatment and biochemical composition. Bioresour Technol 273:556–564

    Article  CAS  Google Scholar 

  • de Godos I, Arbib Z, Lara E, Rogalla F (2016) Evaluation of high rate algae ponds for the treatment of anaerobically digested wastewater: effect of CO2 addition and modification of dilution rate. Bioresour Technol 220:253–266

    Article  CAS  Google Scholar 

  • de Souza Leite L, Hoffmann MT, Daniel LA (2019) Microalgae cultivation for municipal and wastewater treatment in Brazil. Water Process Eng 31:100821

    Article  Google Scholar 

  • Deviram G, Mathimani T, Anto S, Ahamed TS, Ananth DA, Pugazhendhi A (2020) Application of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J Clean Prod 253:119770

    Article  CAS  Google Scholar 

  • Dineshbabu G, Goswami G, Kumar R, Sinha A, Das D (2019) Microalgae–nutritious, sustainable aqua-and animal feed source. J Funct Foods 62:103545

    Article  CAS  Google Scholar 

  • Ding J, Zhao F, Cao Y, Xing L, Liu W, Mei S, Li S (2015) Cultivation of microalgae in dairy farm wastewater without sterilization. Int J Phytoremediat 17(3):222–227

    Article  CAS  Google Scholar 

  • Dogaris I, Loya B, Cox J, Philippidis G (2019) Study of landfill leachate as a sustainable source of water and nutrients for algal biofuels and bioproducts using microalga Picochlorum oculatum in a novel scalable bioreactor. Bioresour Technol 282:18–27

    Article  CAS  Google Scholar 

  • Dordio AV, Belo M, Teixerira DM, Carvalho AJP, Dias CMB, Pico Y, Pint AP (2011) Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Bioresour Technol 102:7827–7834

    Article  CAS  Google Scholar 

  • Elango B, Rajendran P, Bornmann L (2017) A scientometric analysis of international collaboration and growth literature at the macro level. Malays J Libe Inf Sci 20(02):41–50

    Google Scholar 

  • El-Bassi L, Assaz AA, Jellai S, Akrout H, Marks EAN, Ghimbew CM, Jeguirim M (2021) Application of olive waste-based biochars in agriculture: impact on soil properties, enzymatic activities and tomato growth. Sci Total Environ 744(1):142531

    Article  CAS  Google Scholar 

  • El-Kassas YH, Mohamed LA (2014) Bioremediation of textile effluent by Chlorella vulgaris. Egypt J Aquatic Res 40(3):301–308

    Article  Google Scholar 

  • Elrayies GM (2018) Microalgae prospects for greener future buildings. Renew Sus Energ Rev 244:1175–1191

    Article  CAS  Google Scholar 

  • Emparan Q, Jye YS, Danquah MK, Harun R (2020) Cultivation of Nannochloropsis sp. microalgae in palm oil mill effluent (POME) media for phycoremediation and biomass production: effect of microalgal cells with and without beads. J Water Process Eng 33:101043

    Article  Google Scholar 

  • Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acids. Bioresour Technol 102(1):88–93

    Article  CAS  Google Scholar 

  • Fan L, Zhang H, Li J, Wang Y, Leng L, Li J, Yao Y, Lu Q, Yuan W, Zhou W (2020) Algal biorefinery to value added products by using combined processes based on thermochemical conversion: a review. Algal Res 47:101819

    Article  Google Scholar 

  • Farooq W, Lee YC, RyuBG, Kim BH, Kim HS, Choi YE, Yang JW (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 123:230–238

  • Feng X, Walker TH, Bridges WC, Thornton C, Gopalakrishnan K (2014) Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresour Technol 166:17–23

  • Ferreira A, Ribeiro B, Marques PASS, Ferreira AF, Dias AP, Pinheiro HM, Reis A, Gouveia L (2017) Scenedesmus obliquus mediated brewery wastewater remediation and CO2 biofixation for green energy purpose. Clean Prod 165:1315–1327

    Article  CAS  Google Scholar 

  • Gao F, Li C, Yang ZH, Zeng GM, Feng LJ, Liu JZ, Liu M, Cai HW (2016) Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrient removal. Ecol Eng 92:55–61

    Article  Google Scholar 

  • Gentili FG (2014) Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gas. Bioresour Technol 169:27–32

    Article  CAS  Google Scholar 

  • Gupta PL, Choi HJ, Lee SM (2016a) Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Environ Sci Pollut Res 23(10):10114–10123

    Article  CAS  Google Scholar 

  • Gupta PL, Lee SM, Choi HJ (2016b) Integration of microalgal cultivation system for wastewater remediation and sustainable biomass production. World J Microbiol Biotechnol 32:139

    Article  CAS  Google Scholar 

  • Hena S, Fatihah S, Tabassum S (2015a) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Res Indus 10:1–14

    Article  Google Scholar 

  • Hena S, Fatihah N, Tabassum S, Ismail N (2015b) Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement. Water Res 80:346–356

    Article  CAS  Google Scholar 

  • Hom-Daiz A, Norvill ZN, Blanquez P, Vincet T, Guieysse B (2017) Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds. Chemisphere 180:33–41

    Article  CAS  Google Scholar 

  • Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L (2011) Cultivation of Chlorella pyrenoidosa in saoybean processing wastewater. Bioresour Technol 102(21):9884–9890

  • Hu Y, Qi L, Feng S, Bassi A, Xu CC (2019) Comparative studies on liquefaction of low-liquid microalgae into bio-crude oil using varying reaction media. Fuel 238:240–247

    Article  CAS  Google Scholar 

  • Huo S, Wang Z, Zhu S, Zhou W, Dong R, Yuan Z (2012) Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy waste water in winter, South China. Bioresour Technol 121:76–82

    Article  CAS  Google Scholar 

  • Hussain F, Shah SZ, Zhou W, Iqbal M (2017) Microalgae screening under CO2 stress: growth and micro-nutrients removal efficiency. J Photochem Photobiol B 170:91–98

    Article  CAS  Google Scholar 

  • Javed A, King AJ, Muhammad M, Tina J, Sadiya N (2019) Omega-3 supplementation for enhancement of egg functional properties. J Food Process Preserv e14052. https://doi.org/10.1111/jfpp.14052

  • Ji Y, Hu W, Li X, Ma G, Song M, Pei H (2014) Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater. Bioresour Technol 152:471–476

    Article  CAS  Google Scholar 

  • Ji MK, Yun HS, Park YT, Kabra AN, Oh IH, Choi J (2015) Mixotrophic cultivation of a microalgae Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J Environ Manag 159:115–120

    Article  CAS  Google Scholar 

  • Kao CY, Chen TV, Chang YB, Chiu TW, Lin HY, Chen CH (2014) Utilization of carbon dioxide in industrial flue gas for the cultivation of microalgae Chlorella sp. Bioresour Technol 128:359–364

    Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FA (2007) Food web specific biomagnifications of persistent organic pollutants. Science 317(5835):236–239

    Article  CAS  Google Scholar 

  • Khalid AAK, Yaakob Z, Abdullah SRS, Takriff MS (2019) Assessing the feasibility of microalgae cultivation in agricultural wastewater. Environ Technol Innov 15:100402

    Article  Google Scholar 

  • Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents, current scenario and future prospects. Biotechnol Adv 33(8):1697–1714

    Article  CAS  Google Scholar 

  • Khandare R, Watharkar A, Kabra A, Kachole M, Govindwar S (2014) Development of a low cost, phytotunnel system using Portulaca grandiflora and its applications for the treatment of dye containing wastewaters. Biotechnol Lett 36:47–55

    Article  CAS  Google Scholar 

  • Kim HC, Choi WJ, Chae AN, Park J, Kim HJ, Song KG (2016) Treating high strength saline piggery wastewater using the heterotrophic cultivation of Acutodesmus obliquus. Biochem Eng J 110:51–58

    Article  CAS  Google Scholar 

  • Kong WB, Yang H, Cao YT, Song H, Hua SFCG (2013) Effect of glycerol and glucose on the enhancement of biomass, lipid, and soluble carbohydrates production by Chlorella vulgaris in mixotrophic culture. Food Technol Biotechnol 51:62–69

    CAS  Google Scholar 

  • Korhonen J, Honkasalo A, Seppala J (2018) Circular economy: the concept and its limitations. Ecol Econ 143:37–46

    Article  Google Scholar 

  • Kouhia M, Holmberg H, Ahtila P (2015) Microalgae utilizing biorefinery concept for pulp and paper industry: converting secondary streams into value added product. Algal Res 10:41–47

    Article  Google Scholar 

  • Kuramochi T, Ramierz A, Turkenburg W, Faaij A (2012) Comparative assessments of CO2 capture technologies for carbon intensive industrial process. Prog Energy Combust 38:87–112

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  CAS  Google Scholar 

  • Lawton RJ, de Nys R, Skinner S, Paul NA (2014) Isolation and identification of Oedogonium species and strains for biomass applications. PLoS One 9(3):e90223

    Article  CAS  Google Scholar 

  • Lee CS, Lee SA, Ko SR, Oh HM, Ahn CY (2015) Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res 68:680–691

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Leon R, Galvan F (1999) Interaction between saline stress and photoinhibition of photosynthesis in the freshwater green algae Chlamydomonas reinhardtii, implication for glycerol photoproduction. Plant Physiol Biochem 37:623–628

    Article  CAS  Google Scholar 

  • Lewitus AJ, Caron DA, Miller KR (1991) Effect of light and glycerol on the organization of the photosynthetic apparatus in the facultative heterotroph Pyrenomonas salina (Cryptophyceae). J Phycol 27:578–587

    Article  Google Scholar 

  • Li J, Liu R, Chang G, Li X, Chang M, Liu Y, Jin Q, Wang X (2015) A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour Technol 177:51–57

    Article  CAS  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101(19):7314–7322

    Article  CAS  Google Scholar 

  • Lin TS, Wu JY (2015) Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour Technol 184:100–107

    Article  CAS  Google Scholar 

  • Lopez Rocha CJ, Alvarez-Castillo E, Estrada Yanez MR, Bengoechea C, Guerrero A, Orta Ledesma MT (2020) Development of bioplastics from a microalgae consortium from wastewater. Environ Mange 263:110353

    Article  CAS  Google Scholar 

  • Lu W, Wang Z, Wang X, Yuan Z (2015) Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: characteristics comparison of indoor bench scale and outdoor pilot-scale cultures. Bioresour Technol 192:382–388

    Article  CAS  Google Scholar 

  • Ma X, Zheng H, Addy M, Anderson E, Liu Y, Chen P, Ruan R (2016) Cultivation of Chlorella vulgaris in wastewater with waste glycerol: strategies for improving nutrients removal enhancing lipid production. Bioresour Technol 207:252–261

    Article  CAS  Google Scholar 

  • Maheshwari N, Krishna PK, Thakur IS, Srivastava S (2020) Biological fixation of carbon dioxide and biodiesel production using microalgae isolated from sewage wastewater. Environ Sci Pollut Res 27:27319–27329

    Article  CAS  Google Scholar 

  • Mandik YI, Cheirsilp B, Srinuanpan S, Maneechote W, Boonsawang P, Prasertsan P, Sirisansaneeyakul S (2020) Zero waste biorefinery of oleaginous microalgae as promising sources of biofuels and biochemicals through direct transesterification and acid hydrolysis. Process Biochem 95:214–222. https://doi.org/10.1016/j.procbiochem.2020.02.011

    Article  CAS  Google Scholar 

  • Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nature Revs Mol Cell Biol 7(5):373–378

    Article  CAS  Google Scholar 

  • Matamoros V, Uggetti E, Garcia J, Bayona JM (2016) Assessment of the mechanisms involved in the removal of emerging contaminats by microalgae from wastewater. Hazard Mat 301:197–205

    Article  CAS  Google Scholar 

  • Michels MH, Vaskoska M, Vermune MH, Wijffels RH (2014) Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish pharm. Water Res 65:290–296

    Article  CAS  Google Scholar 

  • Mohan SV, Rohit MV, Chiranjeevi P, Chandra R, Navaneeth B (2015) Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresour Technol 184:169–178

    Article  CAS  Google Scholar 

  • Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T (2021) Integrating microalgae into wastewater treatment: a review. Sci Total Environ 752:142168

    Article  CAS  Google Scholar 

  • Nagappan S, Tsai PC, Devendran S, Alagarsamy V, Ponnusamy VK (2020) Enhancement of biofuel production by microalgae using flue gas as substrate. Environ Sci Pollut Res 27(15):17571–17586

    Article  CAS  Google Scholar 

  • Nagarajan D, Lee DJ, Chen CY, Chang JS (2020) Resource recovery from wastewaters using microalgae based approaches: a circular bio-economy perspective. Bioresour Technol 302:122817

    Article  CAS  Google Scholar 

  • Nayak M, Karemore A, Sen R (2016) Sustainable valorization of flue gas CO2 and wastewater for the production of microalgal biomass as feedstock in closed and open reactor system. RSC Adv 6:9111

    Article  Google Scholar 

  • Neilson AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an easy in comparative biochemistry. Phycologia 13:227–264

    Article  CAS  Google Scholar 

  • Novoveska L, Zapata AK, Zabolotney JB, Atwood MC, Sundstrom ER (2016) Optimizing microalgae cultivation and wastewater treatment in large scale offshore photobioreactors. Algal Res 18:86–94

    Article  Google Scholar 

  • Nur MA, Irawan MA (2015) Utilization of coconut milk skim effluent (CMSE) as medium growth for Spirulina platensis. Procedia Environ Sci 23:72–77

    Article  CAS  Google Scholar 

  • Nwoba EG, Ayre JM, Moheimani NR, Ubi BE, Ogbonna JC (2016) Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Res 17:268–276

  • Pacheco R, Ferreira AF, Pinto T, Nobre BP, Loureiro D, Moura P, Gouveia L, Silva CM (2015) The production of pigments and hydrogen through a Spirogyra sp. biorefinery. Energy Convers Manag 89:789–797

  • Pancha I, Chokshi K, Mishra S (2015) Enhanced biofuel production with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077. Bioresour Technol 179:565–572

    Article  CAS  Google Scholar 

  • Pandey A, Srivastava S, Kumar S (2020) Development and cost-benefit analysis of a novel process for biofuel production microalgae using pretreated high strength fresh cheese whey wastewater. Environ Sci Pollut Res 27:23963–23980

    Article  CAS  Google Scholar 

  • Paranjape K, Leite GB, Hallenbeck PC (2016) Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol. Bioresour Technol 214:778–786

    Article  CAS  Google Scholar 

  • Pathak VV, Kothari R, Chopra AK, Singh DP (2015) Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. J Environ Manag 163:270–277

    Article  CAS  Google Scholar 

  • Pena ACC, Agustini CB, Trierweiler LF, Gutterres M (2020) Influence of period light on cultivation of microalgae consortium for the treatment of tannery wastewaters from leather finishing stage. Clean Prod 263(1):121618

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Hordem B (2015) A review on emerging contaminants in wastewaters and the environment current knowledge, understudies areas and recommendations for future monitoring. Water Res 72:3–27

    Article  CAS  Google Scholar 

  • Polishchuk A, Valey D, Tarvainen M, Mishra S, Kinnunen V, Antal T, Yang B, Rintala J, Tyystjarvi E (2015) Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry. Bioresour Technol 193:469–476

    Article  CAS  Google Scholar 

  • Praveen P, Heng JYP, Loh KC (2016) Tertiary wastewater treatment in membrane photobioreactor using microalgae: comparison of forward osmosis and microfiltration. Bioresour Technol 222:448–457

    Article  CAS  Google Scholar 

  • Rai MP, Nigam S, Sharma R (2013) Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy 58:251–257

    Article  CAS  Google Scholar 

  • Richmond A (1986) Cell response to environmental factors. In: Richmond A (ed) Handbook for microalgal mass Culture. CRC Press, Boca Raton, pp 69–99

    Google Scholar 

  • Saranya D, Shanthakumar S (2020) Effect of culture conditions on biomass yield of acclimatized microalgae in ozone pretreated tannery effluent: a simultaneous exploration of bioremediation and lipid accumulation potential. Environ Manag 273:111129

    CAS  Google Scholar 

  • Serra A, Artal R, Garcia-Amoros J, Gomez E, Philippe L (2020) Circular zero residues process using microalgae for efficient water decontamination, biofuel production and carbon dioxide fixation. Chem Eng J 388:124278

    Article  CAS  Google Scholar 

  • Singh A, Ummalyma SB, Sahoo D (2020) Bioremediation and biomass production of microalgae cultivation in river water contaminated with pharmaceutical effluent. Bioresour Technol 307:123233

    Article  CAS  Google Scholar 

  • Skorupskaite V, Makareviciene V, Levisauskas D (2015) Optimization of mixotrophic cultivation of microalgae Chlorella sp. for biofuel production using response surface methodology. Algal Res 7:45–50

    Article  Google Scholar 

  • Song C, Qiu Y, Li S, Liu Z, Chen G, Sun L, Wang K, Kitamura Y (2019) A novel concept of bicarbonate-carbon utilization via an absorption-microalgae hybrid process assisted with nutrient recycling from soybean wastewater. Clean Prod 237(10):117864

    Article  CAS  Google Scholar 

  • Stevenson J, Graham L (2014) Ecological assessments with algae: a review and synthesis. J Phycol 50(3):437–461

    Article  Google Scholar 

  • Subhadra BG, Edwards M (2011) Coproduct market analysis and water footprint of simulated commercial algal biorefineries. Appl Energy 88(10):3515–3523

  • Sun X, Wang C, Li Z, Wang W, Tong Y, Wei J (2013) Microalgal cultivation in wastewater from the fermentation effluent in Riboflavin (B2) manufacturing for biodiesel production. Bioresour Technol 143:499–504

  • Sun L, Tian Y, Zhang J, Cui H, Zuo W, Li J (2018) A novel symbiotic system combining algae and sludge membrane bioreactor technology for wastewater treatment and membrane fouling mitigation: performance and mechanism. Chem Eng J 344:246–253

    Article  CAS  Google Scholar 

  • Sutherland DL, Park P, Ralph PJ, Craggs RJ (2020) Improved microalgal productivity and nutrient removal through operating wastewater high rate algal ponds in series. Algal Res 47:101850

    Article  Google Scholar 

  • Ummalyma SB, Sukumaran RK (2014) Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load. Bioresour Technol 165:295–301

    Article  CAS  Google Scholar 

  • Ummalyma SB, Sukumaran RK (2015) Cultivation of freshwater microalga Chlorococcum sp. RAP13 in sea water for producing oil suitable for biodiesel. Appl Phycol 27:141–147

    Article  CAS  Google Scholar 

  • Van Den Hende S, Beelen V, Julien L, Lefoulon A, Vanhoucke T, Coolsaet C, Sonnenholzner S, Vervaeren H, Rousseau DP (2016a) Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: an outdoor pilot-scale study. Bioresour Technol 218:969–979

    Article  CAS  Google Scholar 

  • Van Den Hende S, Beyls J, De Buyck PJ, Rousseau DP (2016b) Food-industry-effluent-grown microalgal bacterial flocs as a bioresource for high-value phycochemicals and biogas. Algal Res 18:25–32

    Article  Google Scholar 

  • Vigani M (2020) The bioeconomy of microalgae-based processes and products. In: Jacob-Lopes E, Queiroz MI, Maroneze MM, Zepka LQ (eds) Handbook of microalgae-based processes and products. Academic press, Elsevier, pp 799–821

    Chapter  Google Scholar 

  • Vigani M, Parisi C, Rodriguez-Cerezo E, Barbosa MJ, Sijtsma L, Pleoeg M, Enzing C (2015) Food and feed product from microalgae: market opportunities and challenges for the EU. Trends Food Sci Technol 42(1):81–92

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162(4):1174–1186

    Article  CAS  Google Scholar 

  • Wang M, Yang Y, Chen Z, Chen Y, Wen Y, Chen B (2016a) Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae. Bioresour Technol 222:130–138

    Article  CAS  Google Scholar 

  • Wang Y, Hsinho S, Cheng CL, Guo WQ, Nagarajan D, Ren NQ, Lee DJ, Chang JS (2016b) Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol 222:485–497

    Article  CAS  Google Scholar 

  • Wang Y, Castillo-Keller M, Eustance E, Sommerfeld M (2017) Early detection and quantification of zooplankton grazers in algal cultures by flow CAM. Algal Res 21:98–102

    Article  Google Scholar 

  • Xiong JQ, Kurade MB, Abou-Shanab RAI, Ji MK, Choi J, Kim JO, Jeon BH (2016) Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour Technol 205:183–190

    Article  CAS  Google Scholar 

  • Xu K, Zou X, Wen H, Xue Y, Qu Y, Li Y (2019a) Effect of multi temperature regimes on cultivation of microalgae in municipal wastewater to simultaneously remove nutrients and produce biomass. Appl Microbiol Biotechnol 103(9):8255–8265

    Article  CAS  Google Scholar 

  • Xu S, Elsayed M, Ismail GA, Li C, Wang S, Abomohra AEF (2019b) Evaluation of bioethanol and biodiesel production from Scenedesmus obliquus grown in biodiesel waste glycerol: a sequential integrated route for enhanced energy recovery. Energy Convers Manag 197(1):111907

    Article  CAS  Google Scholar 

  • Zhang W, Zhang M, Lin K, Sun W, Xiong B, Guo M, Cui X, Fu R (2012) Ecotoxicological effect of carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environ Toxicol Pharmacol 33(2):344–352

    Article  CAS  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X, Li L, Cheng Y, Chen P, Ruan R (2012) Growing wastewater born microalgae Auxenochlorella protothecoids UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy 98:433–440

  • Zhou W, Wang Z, Xu J, Ma L (2018) Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. Biosci Bioeng 126(5):644–648

    Article  CAS  Google Scholar 

  • Zhu L, Wang Z, Takala J, Hiltunen E, Qin L, Xu Z, Qin X, Yuan Z (2013) Scale up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour Technol 137:318–325

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author SBU thankful to the Director of IBSD, an autonomous institute under Department of Biotechnology, Govt. of India, for provided support and motivation for this work (MSNO IBSD/2020/01/011).

Author information

Authors and Affiliations

Authors

Contributions

SBU: Performed data collection, formal analysis, visualization, writing the original manuscript, review and editing. DS: conceptualization, designing the work, and review. AP: Review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sabeela Beevi Ummalyma.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors mutually agreed to publish the work in this journal.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Ta Yeong Wu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ummalyma, S.B., Sahoo, D. & Pandey, A. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach. Environ Sci Pollut Res 28, 58837–58856 (2021). https://doi.org/10.1007/s11356-020-11645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11645-8

Keywords

Navigation