Skip to main content

Advertisement

Log in

Anti-herbivore activity of soluble silicon for crop protection in agriculture: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Silicon (Si) is considered an important component for plant growth, development, and yield in many crop species. Silicon is also known to reduce plant pests. Although Si, the major component of soil next to oxygen, it is not used as a major nutrient by crop plants. However, extensive literature demonstrate the beneficial effects of soluble silicates, like silicon [orthosilicic acid (Si(H4SiO4)], on reducing biotic stress in crop ecosystems. In general, monocots tend to accumulate substantially more Si in plant tissues than dicots. Si accumulates in plant cell walls, providing protection by increasing the synthesis of lignin and phenolic compounds and activating the endogenous chemical defenses of plants including volatile and non-volatile compounds and other physical structures like trichomes. This review provides an overview of the history of silicon use in agriculture in India, for the management of insect pests. The future research needs in this field of study are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This review paper does not contain any research data.

References

  • Abbasi A, Sufyan M, Arif MJ, Sahi ST (2020) Effect of silicon on oviposition preference and biology of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) feeding on Gossypium hirsutum (Linnaeus). Int J Pest Manag:1–11. https://doi.org/10.1080/09670874.2020.1802084

  • Adatia MH, Besford RT (1986) The effects of silicon on cucumber plants grown in recirculating nutrient solution. Anal Bot 58(3):343–351

    Article  CAS  Google Scholar 

  • Alam A, Hariyanto B, Ullah H, Salin KR, Datta A (2020) Effects of silicon on growth, yield and fruit quality of cantaloupe under drought stress. Silicon. https://doi.org/10.1007/s12633-020-00673-1

  • Alhousari F, Greger M (2018) Silicon and mechanisms of plant resistance to insect pests. Plants 7:33. https://doi.org/10.3390/plants7020033

    Article  CAS  Google Scholar 

  • Almeida GD, Pratissoli D, Zanuncio JC, Vicentini VB, Holtz AM, Serrão JE (2009) Calcium silicate and organic mineral fertilizer increase the resistance of tomato plants to Frankliniella schultzei. Phytoparasitica 37:225–230. https://doi.org/10.1007/s12600-009-0034-7

    Article  CAS  Google Scholar 

  • Alvarenga R, de Moraes JC, Auad AM, Coelho M, Nascimento A (2017) Induction of resistance of corn plants to Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) by application of silicon and gibberellic acid. Bull Entomol Res 107(4):1–7

    Article  CAS  Google Scholar 

  • Anda M, Suryani E, Husnain SD (2015) Strategy to reduce fertilizer application in volcanic paddy soils: nutrient reserves approach from parent materials. Soil Tillage Res 50:10–20. https://doi.org/10.1016/j.still.2015.01.005

    Article  Google Scholar 

  • Anderson DL, Jones DB, Snyder GH (1987) Response of a rice-sugarcane rotation to calcium silicate slag on everglades histosols 1. Agron J 79(3):531–535

    Article  Google Scholar 

  • Assis FA, Moraes JC, Auad AM, Coelho M (2013) The effects of foliar spray application of silicon on plant damage levels and components of larval biology of the pest butterfly Chlosyne lacinia saundersii (Nymphalidae). Int J Pest Manag 59:128–134

    Article  CAS  Google Scholar 

  • Bakhat HF, Bibi N, Zia Z, Abbas S, Hammad HM, Fahad S (2018) Silicon mitigates biotic stresses in crop plants: a review. Crop Prot 104:21–34

    Article  CAS  Google Scholar 

  • Barbeta BL, Marshal AT, Gillon AD, Craik DJ, Anderson MA (2008) Plant cyclotides disrupt epithelial cell in the midgut of Lepidoptera larvae. Proc Natl Acad Sci U S A 105:1221–1225. https://doi.org/10.1073/pnas.0710338104

    Article  Google Scholar 

  • Basagli MAB, Moraes JC, Carvalho GA, Ecole CC, de Cássia Rodrigues Gonçalves-Gervásio R (2003) Effects of sodium silicate application on the resistance of wheat plants to the green-aphid Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotrop Entomol 32:659–663. https://doi.org/10.1590/S1519-566X2003000400017

    Article  CAS  Google Scholar 

  • Boer CA, Sampaaio MV, Pereira HS (2019) Silicon-mediated and constitutive resistance to Rhopalosiphum maidis (Hemiptera: Aphididae) in corn hybrids. Bull Entomol Res 119:359–364

    Google Scholar 

  • Brown D (2019) The effects of silicon accumulation in corn on the fall armyworm (Lepidoptera: Noctuidae). Doctoral dissertation, University of Delaware

  • Calatayud P, Njuguna E, Juma G (2016) Silica in insect-plant interactions. Entomol Ornithol Herpetol 5:4

    Google Scholar 

  • Callis-Duehl KL, McAuslane HJ, Duehl AJ, Levey DJ (2017) The effects of silica fertilizers as an anti-herbivoure defense in cucumber. J Hortic Res 25:89–98

    Article  CAS  Google Scholar 

  • Casey WH, Kinrade SD, Knight CTG, Rains DW, Epstein E (2004) Aqueous silicate complexes in wheat, Triticum aestivum L. Plant Cell Environ 27:51–54. https://doi.org/10.1046/j.0016-8025.2003.01124.x

    Article  CAS  Google Scholar 

  • Chandramani P, Rajendran R, Muthiah C, Chinnaiah C (2010) Organic source induced silica on leaf folder, stem borer and gall midge population on rice field. J Biopesticides 3:423–427

    CAS  Google Scholar 

  • Connick VJ (2011) The impact of silicon fertilisation on the chemical ecology of grapevine, Vitis vinifera constitutive and induced chemical defences against arthropod pests and their natural enemies. Ph. D. thesis, Charles Sturt University, Albury-Wodonga, NSW

  • Correa RSB, Moraes JC, Auad AM, Carvalho GA (2005) Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Neotrop Entomol 34(3):429–433. https://doi.org/10.1590/S1519-566X2005000300011

    Article  CAS  Google Scholar 

  • Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Belanger RR (2019) The controversies of silicon’s role in plant biology. New Phytol 221:67–85. https://doi.org/10.1111/nph.15343

    Article  Google Scholar 

  • Costa RR, Moraes JC (2002) Resistance induced in sorghum by sodium silicate and initial infestation by the green aphid Schizaphis graminum. Ecossistema 27:37–39

    Google Scholar 

  • Costa RR, Moraes JC (2006) Efeitos do acido silicico e do acibenzolar-S-methyl sobre Schizaphis graminum (Rondani) (Hemiptera: Aphididae) em plantas de trigo. Neotrap Entomol 35:834–839

    Article  CAS  Google Scholar 

  • Costa RR, Moraes JC, DaCosta RR (2011) Feeding behaviour of the greenbug Schizaphis graminum on wheat plants treated with imidacloprid and/or silicon. J Appl Entomol 135:115–120. https://doi.org/10.1111/j.1439-0418.2010.01526.x

    Article  CAS  Google Scholar 

  • Dalastra C, Campos AR, Fernandes FM, Martins GLM, Campos ZR (2011) Silicon as a resistance inducer controlling the silvering thrips Enneothrips flavens Moulton, 1941 (Thysanoptera: Thripidae) and its effects on peanut yield. Ciênc Agrotecno l35:531–538. https://doi.org/10.1590/S1413-70542011000300014

    Article  Google Scholar 

  • Dardouri T, Gomez L, Schoeny A, Costagliola G, Gautier H (2019a) Behavioural response of green peach aphid Myzus persicae (Sulzer) to volatiles from different rosemary (Rosmarinus officinalis L.) clones. Agric For Entomol 21:336–345

    Google Scholar 

  • Dardouri T, Gautier H, Ben Issan R, Costagliola G, Gomez L (2019b) Repellence of Myzus persicae (Sulzer): evidence of two modes of action of volatiles from selected living aromatic plants. Pest Manag Sci 75:1571–1584

    Article  CAS  Google Scholar 

  • Datnoff LE, Snyder GH, Korndorfer GH (2001) Silicon in agriculture. Elsevier Science, New York

    Google Scholar 

  • de Assis FA, Moraes JC, Silveira LCP, Francoso J, Nascimento AM, Antunes CS (2012) Inducers of resistances in potato and its effects on defoliators and predatory insects. Rev Colomb Entomol 38:30–34

    Google Scholar 

  • De Backer L, Bawin T, Schott M, Gillard L, Markó IE, Francis F (2016) Betraying its presence: identification of the chemical signal released by Tuta absoluta-infested tomato plants that guide generalist predators toward their prey. Arthropod Plant Interact 11:111–120. https://doi.org/10.1007/s11829-016-9471-7

    Article  Google Scholar 

  • de Oliveira RS, Peñaflor MFG, Gonçalves FG, Sampaio MV, Korndörfer AP, Silva WD, Bento JMS (2020) Silicon-induced changes in plant volatiles reduce attractiveness of wheat to the bird cherry-oat aphid Rhopalosiphum padi and attract the parasitoid Lysiphlebus testaceipes. PLoS One 15(4):e0231005. https://doi.org/10.1371/journal.pone.0231005

    Article  CAS  Google Scholar 

  • Debona D, Rodrigues FA, Datnoff LE (2017) Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:85–107. https://doi.org/10.1146/annurev-phyto-080516-035312

    Article  CAS  Google Scholar 

  • Dos Santos MC, Junqueira AMR, de Sá VGM, Zauncio JC, Serrão JE (2012) Efeito do silício emaspectos comportamentais e nahistória de vida de Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Rev Brasi Agropec Sust 2:76–88

    Google Scholar 

  • Dos Santos MC, Junquelra AMR, de Sá VGM, Zanunclo JC, Serrao JE (2015) Effect of silicon on the morphology of the midgut and mandible of tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae) larvae. ISJ 12:158–165

    Google Scholar 

  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021

    Article  CAS  Google Scholar 

  • Elawad SH, Gascho GJ, Street JJ (1982) Response of sugarcane to silicate source and rate. I. Growth and yield 1. Agron J 74(3):481–484

    Article  CAS  Google Scholar 

  • Elger A, Lemoine DG, Fenner M, Hanley ME (2009) Plant ontogeny and chemical defence: older seedlings are better defended. Oikos 118:767–773

    Article  CAS  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160. https://doi.org/10.1111/j.1744-7348.2009.00343.x

    Article  CAS  Google Scholar 

  • Etesami H, Jeong BR (2018) Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896. https://doi.org/10.1016/j.ecoenv.2017.09.063

    Article  CAS  Google Scholar 

  • Fauteux F, Remus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6. https://doi.org/10.1016/j.femsle.2005.06.034

    Article  CAS  Google Scholar 

  • Frew A, Powel JR, Hiltpold I, Allsopp PG, Sallam N, Johnson SN (2017) Host plant colonization by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivour. Soil Biol Biochem 112:117–126

    Article  CAS  Google Scholar 

  • Frew A, Weston LA, Reynolds OL, Gurr GM (2018) The role of silicon in plant biology: a paradigm shift in research approach. Ann Bot 121:1265–1273. https://doi.org/10.1093/aob/mcy009

    Article  CAS  Google Scholar 

  • Gomes FB, de Moraes JC, dos Santos CD, Goussain MM (2015) Resistance induction in wheat plants by silicon and aphids. Sci Agric 62(6):547–551

    Article  Google Scholar 

  • Goto M, Ehara H, Karita S, Takabe K, Ogawa N, Yamada Y, Morita O et al (2003) Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Sci 164(3):349–356

    Article  CAS  Google Scholar 

  • Goussain MM, Moraes JC, Carvalho JG, Nogueira NL, Rossi ML (2002) Effect of silicon application on corn plants upon the biological development of the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Neotrop Entomol 31:305–310. https://doi.org/10.1590/S1519-566X2002000200019

    Article  CAS  Google Scholar 

  • Goussain MM, Prado E, Moraes JC (2005) Effect of silicon applied to wheat plants on the biology and probing behaviour of the greenbug Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotrop Entomol l34:807–813. https://doi.org/10.1590/S1519-566X2005000500013

    Article  Google Scholar 

  • Gurr GM, Kvedaras OL (2010) Synergizing biological control: scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Biol Control 52:198–207. https://doi.org/10.1016/j.biocontrol.2009.02.013

    Article  Google Scholar 

  • Hall CR, Waterman JM, Vandegeer RK, Hartley SE, Johnson SN (2019) The role of silicon in antiherbivore phytohormonal signalling. Front Plant Sci 10:1132. https://doi.org/10.3389/fpls.2019.01132

    Article  Google Scholar 

  • Han Y, Lei W, Wen L, Hou M (2015) Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). PLoS One 10(4):e0120557. https://doi.org/10.1371/journal.pone.0120557

    Article  CAS  Google Scholar 

  • Han Y, Li P, Gong S, Yang L, Wen L, Hou M (2016) Defense responses in rice induced by silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. PLoS One 11:e0153918. https://doi.org/10.1371/journal.pone.0153918

    Article  CAS  Google Scholar 

  • Haynes RJA (2014) Contemporary overview of silicon availability in agricultural soils. J Plant Nutr Soil Sci 177:831–844. https://doi.org/10.1002/jpln.201400202

    Article  CAS  Google Scholar 

  • He W, Yang M, Li Z, Qiu J, Liu F, Qu X, Qiu Y, Li R (2015) High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper. Crop Prot 67:20–25. https://doi.org/10.1016/j.cropro.2014.09.013

    Article  CAS  Google Scholar 

  • Hoegendorp BK (2008) Effects of silicon-based fertilizer applications on the development and reproduction of insect pests associated with greenhouse-grown crops. Ph.D. Diss., University of Illinois, Urbana–Champaign

  • Hoegendorp BK, Cloyd RA Swiader JM (2009) Silicon-based fertilizer applications have no effect on the reproduction and development of the citrus mealybug, Planococcus citri Risso (Hemiptera: Pseudococcidae), feeding on fiddle leaf fig, Ficus lyrata (Warb.) Kali-Driefe 15:287–296

  • Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plant-insect interactions. Curr Opin Plant Biol 14:422–428. https://doi.org/10.1016/j.pbi.2011.05.003

    Article  CAS  Google Scholar 

  • Islam T, Moore BD, Johnson SN (2020a) Novel evidence for systemic induction of silicon defences in cucumber following attack by a global insect herbivore. Ecol Entomol. https://doi.org/10.1111/een.12922

  • Islam W, Tayyab M, Khalil F, Hua Z, Huang Z, Chen HY (2020b) Silicon-mediated plant defense against pathogens and insect pests. Pestic Biochem Physiol 168:104641. https://doi.org/10.1016/j.pestbp.2020.104641

    Article  CAS  Google Scholar 

  • Jeer M, Telugu UM, Voleti SR, Padmakumari AP (2016) Soil application of silicon reduces yellow stem borer, Scirpophaga incertulas (Walker) damage in rice. J Appl Entomol 141:189–201

    Article  CAS  Google Scholar 

  • Jeer M, Suma K, Uma Maheswari T, Voleti SR, Padmaumari AP (2018) Rice husk ash and imidazole application enhances silicon availability to rice plants and reduces yellow stem borer damage. Field Crop Res 224:60–66

    Article  Google Scholar 

  • Jeer M, Yele Y, Sharma KC, Prakash NB (2020) Exogenous application of different silicon sources and potassium reduces pink stem borer damage and improves photosynthesis, yield and related parameters in wheat. Silicon. https://doi.org/10.1007/s12633-020-00481-7

  • Jinger D, Devi MT, Dhar S, Dass A, Rajanna GA, Upadhaya P, Raj R (2017) Silicon in mitigating biotic stresses in rice (Oryza sativa L.) – a review. Ann Agric Res New Series 38(1):1–14

    Google Scholar 

  • Johnson SN, Tjoelker MG, Ryalls JMW, Wright IJ, Barton CVM, Moore BD (2019) Climate warming and plant biomechanical defences: silicon addition contributes to herbivour suppression in a pasture grass. Funct Ecol 33(4):587–596. https://doi.org/10.1111/1365-2435.13295

    Article  Google Scholar 

  • Johnson SN, Rowe RC, Hall CR (2020) Silicon is an inducible and effective herbivore defence against Helicoverpa punctigera (Lepidoptera: Noctuidae) in soybean. Bull Entomol Res 110(3):417–422

    Article  CAS  Google Scholar 

  • Kauffman GL, Kneivel DP, Watschke TL (2007) Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci 47:261–267

    Article  CAS  Google Scholar 

  • Kaushik P, Saini DK (2019) Silicon as a vegetable crops modulator—a review. Plants 8(6):148

    Article  CAS  Google Scholar 

  • Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ Exp Bot 66:54–60. https://doi.org/10.1016/j.envexpbot.2008.12.012

    Article  CAS  Google Scholar 

  • Keeping MG, Meyer JH, Sewpersad C (2013) Soil silicon amendments increase resistance of sugarcane to stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) under field conditions. Plant Soil 363:297–318. https://doi.org/10.1007/s11104-012-1325-1

    Article  CAS  Google Scholar 

  • Keeping MG, Miles N, Sewpersad C (2014) Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrata) infestations in sugarcane. Front Plant Sci 4:289. https://doi.org/10.3389/fpls.2014.00289

    Article  Google Scholar 

  • Khandaker L, Masum Akond ASMG, Oba S (2011) Foliar application of salicylic acid improved the growth, yield and leaf’s bioactive compounds in red Amaranth (Amaranthus tricolor L.). Veg Crops Res Bull 74:77–86. https://doi.org/10.2478/v10032-011-0006-6

    Article  Google Scholar 

  • Klotzbücher T, Klotzbücher A, Kaiser K, Merbach I, Mikutta R (2018) Impact of agricultural practices on plant-available silicon. Geoderma 331:15–17. https://doi.org/10.1016/j.geoderma.2018.06.011

    Article  CAS  Google Scholar 

  • Korndorfer AP, Cherry R, Nagata R (2004) Effect of calcium silicate on feeding and development of tropical sod webworms (Lepidoptera: Pyralidae). Fla Entomol 87:393–395. https://doi.org/10.1653/0015-4040(2004)087[0393:EOCSOF]2.0.CO;2

    Article  Google Scholar 

  • Korth KI (2006) Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol 141:188–195. https://doi.org/10.1104/pp.106076737

    Article  CAS  Google Scholar 

  • Kvedaras OL, Keeping MG (2007) Silicon impedes stalk penetration by the borer Eldana saccharina in sugarcane. Entomol Exp Appl 125:103–110. https://doi.org/10.1111/j.1570-7458.2007.00604.x

    Article  CAS  Google Scholar 

  • Kvedaras OL, Keeping MG, Goebel FR, Byrne MJ (2007a) Larval performance of the pyralid borer Eldana saccharina Walker and stalk damage in sugarcane: influence of plant silicon, cultivar and feeding site. Int J Pest Manag 53:183–195

    Article  CAS  Google Scholar 

  • Kvedaras OL, Keeping MG, Goebel FR, Byrne MJ (2007b) Water stress augments silicon-mediated resistance of susceptible sugarcane cultivars to the stalk borer, Eldana saccharina (Lepidoptera: Pyralidae). Bull Entomol Res 97:175–183. https://doi.org/10.1017/S0007485307004853

    Article  CAS  Google Scholar 

  • Kvedaras OL, Gurr GM, Choi YS (2008) Silicon and crop plants: induced plant defense and biological control. In abstracts of the IV silicon in agriculture conference, Port Edward, South Africa, October, p 38

  • Kvedaras OL, Byrne MJ, Coombes NE, Keeping MG (2009) Influence of plant silicon and sugarcane cultivar on mandibular wear in the stalk borer Eldana saccharina. Agric For Entomol 11:301–306. https://doi.org/10.1111/j.1461-9563.2009.00430.x

    Article  Google Scholar 

  • Kvedaras OL, An M, Choi YS, Gurr GM (2010) Silicon enhances natural enemy attraction and biological control through induced plant defences. Bull Entomol Res 100:367–371. https://doi.org/10.1017/S0007485309990265

    Article  CAS  Google Scholar 

  • Laane HM (2017) The Effects of the application of foliar sprays with stabilized silicic acid: an overview of the results from 2003-2014. Silicon 9:803–807. https://doi.org/10.1007/s12633-016-9466-0

    Article  CAS  Google Scholar 

  • Laane HM (2018) The effects of foliar sprays with different silicon compounds. Plants 7(2):45. https://doi.org/10.3390/plants7020045

    Article  CAS  Google Scholar 

  • Lang Y, Han YQ, Li P, Li F, Ali S, Hou MI (2017) Silicon amendment is involved in the induction of plant defense responses to a phloem feeder. Sci Rep 7:4232

    Article  CAS  Google Scholar 

  • Leroy N, de Tombeur F, Walgraffe Y, Cornelis JT, Verheggen FJ (2019) Silicon and plant natural defenses against insect pests: impact on plant volatile organic compounds and cascade effects on multitrophic interactions. Plants 8. https://doi.org/10.3390/plants8110444

  • Lewin J, Reimann BE (1969) Silicon and plant growth. Annu Rev Physiol 20(1):289–304

    Article  CAS  Google Scholar 

  • Li Y, Agarwal M, Cao Y, Ren Y (2020) Effect of synthetic amorphous silica powder on the cuticle of Tribolium castaneum and Sitophilus oryzae using hyperspectral imaging technique. Pest Manag Sci 76(1):314–323

    Article  CAS  Google Scholar 

  • Liang Y, Nikoli M, Bélanger R, Gong H, Song A (2015) Silicon and insect pest resistance. In: Silicon in agriculture. Springer, Dordrecht, pp 197–207

    Chapter  Google Scholar 

  • Lin Y, Sun Z, Li Z, Xue R, Cui W, Sun S, Song Y et al (2019) Deficiency in silicon transporter Lsi1 compromises inducibility of anti-herbivore defense in rice plants. Front Plant Sci 10:652

    Article  Google Scholar 

  • Liu J, Zhu J, Zhang P, Han L, Reynolds OL (2017) Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front Plant Sci 8:1–8

    Google Scholar 

  • Ma JF (2004) The role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18. https://doi.org/10.1080/00380768.2004.10408447

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  Google Scholar 

  • Marschner H (1995) Silicon. In: Marschner H (ed) Mineral nutrition of higher plants. Academic, San Diego, pp 417–426

    Google Scholar 

  • Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc R Soc Lond B 273:2299–2304. https://doi.org/10.1098/rspb.2006.3586

    Article  CAS  Google Scholar 

  • Massey FP, Hartley SE (2009) Physical defenses wear you down: progressive and irreversible impacts of silica on insect herbivoures. J Anim Ecol 78:281–291

    Article  Google Scholar 

  • Massey FP, Ennos AR, Hartley SE (2006) Silica in grasses as a defense against insect herbivoures: contrasting effects on folivoures and a phloem feeder. J Anim Ecol 75:595–603

    Article  Google Scholar 

  • Massey FP, Ennos AR, Hartley SE (2007) Grasses and the resource availability hypothesis: the importance of silica-based defences. J Ecol 95:414–424. https://doi.org/10.1111/j.1365-2745.2007.01223.x

    Article  CAS  Google Scholar 

  • Matichenkov VV, Bocharnikova EA, Calvert DV, Snyder GH (2000) Comparison study of soil silicon status in sandy soils of South Florida. Soil Crop Sci Soc Fla Proc 59:132–137

    Google Scholar 

  • Meena VD, Dotaniya ML, Coumar V, Rajendiran S, Ajay KS, Subba Rao AA (2014) case for silicon fertilization to improved crop yields in tropical soils. Proc Natl Acad Sci India B Biol Sci 84(3):505–518. https://doi.org/10.1007/s40011-013-0270-y

    Article  CAS  Google Scholar 

  • Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17

    Article  CAS  Google Scholar 

  • Messina FJ, Sorenson SM (2001) Effectiveness of lacewing larvae in reducing Russian wheat aphid populations on susceptible and resistant wheat. Biol Control 21:19–26. https://doi.org/10.1006/bcon.2000.0914

    Article  Google Scholar 

  • Metcalfe C (1960) Anatomy of the monocotyledons. Clarendon, Oxford

    Google Scholar 

  • Miles N, Manson AD, Rhodes R, van Antwerpen R, Weigel A (2014) Extractable silicon in soils of the South African sugar industry and relationships with crop uptake. Commun Soil Sci Plant Anal 45:2949–2958. https://doi.org/10.1080/00103624.2014.956881

    Article  CAS  Google Scholar 

  • Mir SH, Rashid I, Hussain B, Reshi ZA, Assad R, Sofi IA (2019) Silicon supplementation of rescuegrass reduces herbivory by a grasshopper. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00671

  • Moise ERD, McNeil JN, Hartley SE, Henry HAL (2019) Plant silicon effects on insect feeding dynamics are influenced by plant nitrogen availability. Entomol Ex Appl 167:91–97

    CAS  Google Scholar 

  • Moraes JC, Goussain MM, Basagli MAB, Carvalho GA, Ecole CC, Sampaio CV (2004) Silicon influence on the tritrophic interaction: wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Neotrop Entomol 33:619–624. https://doi.org/10.1590/S1519-566X2004000500012

    Article  Google Scholar 

  • Moraes JC, Assis FA, Assis GA (2019) Use of silicon as resistance factor for plants against insect pests. In: Souza B, Vázquez L, Marucci R (eds) Natural enemies of insect pests in neotropical agroecosystems. Springer, Cham. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-030-24733-1_40

  • Nascimento AM, Assis FA, Moraes JC, Souza BHS (2018) Silicon application promotes rice growth and negatively affects development of Spodoptera frugiperda (J. E. Smith). J Appl Entomol 142:241–249. https://doi.org/10.1111/jen.12461

    Article  CAS  Google Scholar 

  • Nazaralian S, Majd A, Irian S, Najafi F, Ghahremaninejad F, Landberg T, Greger M (2017) Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant Physiol Biochem 15:25–33. http://www.ncbi.nlm.nih.gov/pubmed/28300729

  • Nikpay A (2016) Improving biological control of stalk borers in sugarcane by applying silicon as a soil amendment. J Plant Protect Res 56(4):305–401

    Article  CAS  Google Scholar 

  • Nikpay A, Nejadian SE, Goldasteh S, Farazmand H (2015) Response of sugarcane and sugarcane and sugarcane stalk borers Sesamia spp. (Lepidoptera: Noctuidae) to calcium silicate fertilization. Neotrop Entomol 44(5):498–503

    Article  CAS  Google Scholar 

  • Nikpay A, Nejadian ES, Goldasteh S, Farazmand H (2017) Efficacy of silicon formulations on sugarcane stalk borers, quality characteristics and parasitism rate on five commercial varieties. Proc Natl Acad Sci India Sect B Biol Sci 87:289–297

    Article  CAS  Google Scholar 

  • Pappas ML, Broekgaarden C, Broufas GD, Kant MR, Messelink GJ, Steppuhn A, Wackersf F, van Dam NM (2017) Induced plant defences in biological control of arthropod pests: a double sword. Pest Manag Sci 73:1780–1788

    Article  CAS  Google Scholar 

  • Parrella MP, Costamagna TP, Kaspi R (2007) The addition of potassium silicate to the fertilizer mix to suppress Liriomyza leaf miners attacking chrysanthemums. Acta Hortic 747:365–369. https://doi.org/10.17660/ActaHortic.2007.747.45

    Article  CAS  Google Scholar 

  • Parthiban P, Chinniah C, Baskaran RKM, Rajavel DS, Kalyanasundaram M, Suresh K (2017) Influence of silica nutrition on the population of natural enemies of groundnut (Arachis hypogaea L.). J Entomol Zool Stud 5(6):2652–2655. https://doi.org/10.22271/j.ento

    Article  Google Scholar 

  • Parthiban P, Chinniah C, Murali Baskaran RK, Suresh K, Karthick S (2018a) Influence of calcium silicate application on the population of sucking pests of groundnut (Arachis hypogaea L.). Silicon 11:1687–1692. https://doi.org/10.1007/s12633-018-9988-8

    Article  CAS  Google Scholar 

  • Parthiban P, Chinniah C, Baskaran RKM, Rajavel DS, Suresh K, Karthick KS (2018b) Phenylalanine ammonia lyase activities in groundnut (Arachis hypogaea L.) in response to root and foliar application of two sources of silicon. Int J Res Stud Zool l4(3):12–16. https://doi.org/10.20431/2454-941X.0403002

    Article  Google Scholar 

  • Parthiban P, Chinniah C, Murali Baskaran RK, Kalyanasundaram M, Suresh K, Karthick S (2019) Biochemical alternation and silicon accumulation in groundnut (Arachis hypogaea L.) in response to root and foliar application of two sources of silicon. Phosphorus Sulfur 194:917–921. https://doi.org/10.1080/10426507.2019.1576679

    Article  CAS  Google Scholar 

  • Peixtot MI, Moraes JC, Silva AA, Assis FA (2011) Effect of silicon on the oviposition preference of Bemisia tabaci biotype B (GENN.) (Hemiptera: Aleyrodidae) on bean (Phaseolus vulgaris L.) plants. Cienc Agrotec 35:478–481

    Article  Google Scholar 

  • Pereira HS, Vitti GC, Korndorfer GH (2003) Behavior of different silicon sources in the soil and in tomato crop. Rev Bras Cienc Solo 27:101–108. https://doi.org/10.1590/S0100-06832003000100011

    Article  CAS  Google Scholar 

  • Pinto DG, Aguilar MAG, Souza CAS, Silva DM, Siqueira PR, Cao JR (2014) Photosynthesis, growth and incidence of insect pest in cacao genotypes sprayed with silicon. Biosci J 30:715–724

    Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, Brestic M (2019) Application of silicon nanoparticles in agriculture. Biotech 9(3):90

    Google Scholar 

  • Reynolds OL, Keeping MG, Meyer JH (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Ann Appl Biol 155:171–186. https://doi.org/10.1111/j.1744-7348.2009.00348.x

    Article  CAS  Google Scholar 

  • Reynolds OL, Padula MP, Zeng R, Gurr GM (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci 7:744

    Article  Google Scholar 

  • Rojanaridpiched C, Gracen VE, Everett H, Coors JG, Pugh BF, Bouthyette P (1984) Multiple factor resistance in maize to European corn borer. Maydica 29:305–315

    Google Scholar 

  • Rowe RC, Trebicki P, Gherlenda AN, Johnson SN (2020) Cereal aphid performance and feeding behaviour largely unaffected by silicon enrichment of host plants. J Pest Sci 93:41–48. https://doi.org/10.1007/s10340-019-01144-2

    Article  Google Scholar 

  • Salim M, Saxena RC (1992) Aluminum stresses and varietal resistance: effects on white backed plant hopper. Crop Sci 32:212–219. https://doi.org/10.2135/cropsci1992.0011183X003200010044x

    Article  CAS  Google Scholar 

  • Salim M, Saxena RC, Akbar M (1991) Salinity stress and varietal resistance in rice: effects on white-backed planthopper. Crop Sci 30:654–659. https://doi.org/10.2135/cropsci1990.0011183X003000030036x

    Article  Google Scholar 

  • Sawant AS, Patil VH, Savant NK (1994) Rice hull ash applied to see bold reduces dead hearts in transplanted rice. Int Rice Res Notes 19(4):21–22

    Google Scholar 

  • Senthil-Nathan S (2019) Effect of methyl jasmonate (MeJA)‐induced defenses in rice against the rice leaffolder Cnaphalocrocis medinalis (Guenèe) (Lepidoptera: Pyralidae). Pest Manag Sci 75(2):460–465

  • Setamou M, Schulthess F, Bosque-Perez NA, Thomas-Odjo A (1993) Effect of plant nitrogen and silica on the bionomics of Sesamia calamistis (Lepidoptera: Noctuidae). Bull Entomol Res 83:405–411. https://doi.org/10.1017/S000748530002931X

    Article  Google Scholar 

  • Shalaby G (2011) Utilization of silica to suppress populations of the cotton leafworm, Spodoptera littoralis Boisd. on sugar beet. J Agric Res Kafer EI-Sheikh Univ 37(4):668–678

    Google Scholar 

  • Sharma VK, Chatterji SM (1971) Studies on some chemical constituents in relation to differential susceptibility of some maize germplasms to Chilo zonellus (Swinhoe). Indian J Entomol 33:419–424

    Google Scholar 

  • Sidhu JK, Stout MJ, Blouin DC, Datnoff LE (2013) Effect of silicon soil amendment on performance of sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae) on rice. Bull Entomol Res 103:656–664. https://doi.org/10.1017/S0007485313000369

    Article  CAS  Google Scholar 

  • Silva RV, deLima Oliveira RDA, da Silva Ferreira P, Castro DB, Rodrigues FA (2015) Effects of silicon on the penetration and reproduction events of Meloidogyne exigua on coffee roots. Bragantia 74:196–199. https://doi.org/10.1590/1678-4499.360

    Article  CAS  Google Scholar 

  • Singh A, Kumar A, Hartley S, Singh IK (2020) Silicon: its ameliorative effect on plant defense against herbivory. J Exp Bot. https://doi.org/10.1093/jxb/eraa300

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843. https://doi.org/10.1104/pp.111.191593

    Article  CAS  Google Scholar 

  • Subbarao DV, Perraju A (1976) Resistance in some rice strains to first-instar larvae of Tryporyza incertulas (Walker) in relation to plant nutrients and anatomical structure of the plants. Int Rice Res Newslett 1(1):14–15

    Google Scholar 

  • Sun Y, Qiao H, Ling Y, Yang S, Rui C, Pelosi P (2011) New analogues of (E)-β-farnesene with insecticidal activity and binding affinity to aphid odorant-binding proteins. J Agric Food Chem 59:2456–2461. https://doi.org/10.1021/jf104712c

    Article  CAS  Google Scholar 

  • Sun YF, De Biasio F, Qiao HL, Lovinella I, Yang SX, Ling Y (2012) Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (E)-β-farnesene and structural analogues. PLoS One 7:e32759. https://doi.org/10.1371/journal.pone.0032759

    Article  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2014) Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. J Synth React Inorg Metal-Org Nano-Met Chem 44:1128–1131. https://doi.org/10.1080/15533174.2013.799197

    Article  CAS  Google Scholar 

  • Teixeira NC, Valim JOS, Campos WG (2017) Silicon-mediated resistance against specialist insects in sap-sucking and leaf-chewing guilds in the Si non-accumulator collard. Entomologia Experimentalis Et Applicata 165:94–108. https://doi.org/10.1111/eea.12628

    Article  CAS  Google Scholar 

  • Tubana BS, Heckman JR (2015) Silicon in soils and plants. In: Rodrigues FA, Datnoff LE (eds) Silicon and plant diseases. Springer, pp 7–51. https://doi.org/10.1007/978-3-319-22930-0_2

  • Turlings TCJ, Tumlinson J, Heath RR, Proveaux AT, Doolittle RE (1991) Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J Chem Ecol 17:2235–2251

    Article  CAS  Google Scholar 

  • Ukwungwu MN (1990) Host plant resistance in rice to the African striped borer, Chilo zacconius Bles. (Lepidoptera: Pyralidae). Int J Trop Insect Sci 11:639–647. https://doi.org/10.1017/S1742758400021202

    Article  Google Scholar 

  • Van Bockhaven J, Spíchal L, Novák O, Strnad M, Asano T, Kikuchi S, Hofte M, De Vleesschauwer D (2015) Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol 206:761–773. https://doi.org/10.1111/nph.13270

    Article  CAS  Google Scholar 

  • Vilela M, Moraes JC, Alves E, Santos-Cividanes TM, Santos FA (2014) Induced resistance to Diatraea saccharalis (Lepidoptera: Crambidae) via silicon application in sugarcane. Rev Colomb Entomol 40:44–48

    Google Scholar 

  • Walsh OS, Shafian S, McClintick-Chess JR, Belmont KM, Blanscet SM (2018) Potential of silicon amendment for improved wheat production. Plants 7(2). https://doi.org/10.3390/plants7020026

  • Wang J, Xue R, Ju X, Yan H, Gao Z (2020) Silicon-mediated multiple interactions: simultaneous induction of rice defense and inhibition of larval performance and insecticide tolerance of Chilo suppressalis by sodium silicate. Ecol Evol 10(11):4816–4827. https://doi.org/10.1002/ece3.6235

    Article  Google Scholar 

  • Yang L, Han Y, Li P, Wen L, Hou M (2017) Silicon amendments to rice plants impairs sucking behaviours and population growth in the phloem feeder Nilaparvata lugens (Hemiptera: Delphacidae). Sci Rep 7:1101. https://doi.org/10.1038/s41598-017-01060-4

    Article  CAS  Google Scholar 

  • Ye M, Song Y, Long J, Wang R, Baerson SR, Pan Z, Zhu-Salzman K, Xie J, Cai K, Luo S, Zeng R (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci U S A 110:3631–3639. https://doi.org/10.1073/pnas.1305848110

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript is a contribution (No. NIBSM/Re. p-06/2019-02/38) from ICAR-NIBSM, Raipur.

Funding

Funding is not required as it is a review paper.

Author information

Authors and Affiliations

Authors

Contributions

RKMB, SSN, and WBH collected all the literature, compiled, edited, and improved the language of this review paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramasamy Kanagaraj Murali-Baskaran.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval and consent to participate

This review paper does not report or involve the use of any animal or human data or tissue.

Consent for publication

The authors do not report any individual details, images, or videos in this review paper.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali-Baskaran, R.K., Senthil-Nathan, S. & Hunter, W.B. Anti-herbivore activity of soluble silicon for crop protection in agriculture: a review. Environ Sci Pollut Res 28, 2626–2637 (2021). https://doi.org/10.1007/s11356-020-11453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11453-0

Keywords

Navigation