Skip to main content

Advertisement

Log in

Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phytoremediation is considered one of the well-established and sustainable techniques for the removal of heavy metals and metalloids from contaminated sites. The metal extraction ability of the plants can be enhanced by using suitable organic materials in combination with metal-tolerant plants. This experiment was carried out to investigate the phytoextraction potential of Mentha piperita L. for nickel (Ni) with and without citric acid (CA) amendment in hydroponic experiment. The experiment was performed in controlled glass containers with continuous aeration in complete randomized design (CRD). Juvenile M. piperita plants were treated with different concentrations of Ni (100, 250, and 500 μM) alone and/or combined with CA (5 mM). After harvesting the plants, the morpho-physiological and biochemical attributes as well as Ni concentrations in different tissues of M. piperita plants were measured. Results revealed that Ni stress significantly decreased the plant agronomic traits, photosynthesis in comparison to control. Nickel stress enhanced the antioxidant enzymes activities and caused the production of reactive oxygen species (ROS) in M. piperita. The CA treatment under Ni stress significantly improved the plant morpho-physiological and biochemical characteristics when compared with Ni treatments alone. The results demonstrated that CA enhanced the Ni concentrations in roots, stems, and leaves up to 138.2%, 54.2%, and 38%, respectively, compared to Ni-only-treated plants. The improvement in plant growth with CA under Ni stress indicated that CA is beneficial for Ni phytoextraction by using tolerant plant species.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd_Allah EF, Hashem A, Alam P, Ahmad P (2019) Silicon alleviates nickel-induced oxidative stress by regulating antioxidant defense and glyoxalase systems in mustard plants. J Plant Growth Regul 38:1260–1273. https://doi.org/10.1007/s00344-019-09931-y

    Article  CAS  Google Scholar 

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  • Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F, Ibrahim M, Mehmood MA, Abbasi GH (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22:11679–11689. https://doi.org/10.1007/s11356-015-4396-8

    Article  CAS  Google Scholar 

  • Ahmad R, Ali S, Rizwan M, Dawood M, Farid M, Hussain A, Wijaya L, Alyemeni MN, Ahmad P (2020) Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiol Plant 168:289–300. https://doi.org/10.1111/ppl.13001

    Article  CAS  Google Scholar 

  • Al Mahmud J, Bhuyan MHMB, Anee TI et al (2019) Reactive oxygen species metabolism and antioxidant defense in plants under metal/metalloid stress. In: Plant Abiotic Stress Tolerance. Springer International Publishing, pp 221–257

  • Al-Qurainy F (2009) Toxicity of heavy metals and their molecular detection on Phaseolus vulgaris (L.). Aust J Basic Appl Sci 3(3):3025–3035

    CAS  Google Scholar 

  • Amjad M, Raza H, Murtaza B et al (2020) Nickel toxicity induced changes in nutrient dynamics and antioxidant profiling in two maize (Zea mays l.) hybrids. Plants. https://doi.org/10.3390/plants9010005

  • Antić-Mladenović S, Frohne T, Kresović M, Stärk HJ, Tomić Z, Ličina V, Rinklebe J (2017) Biogeochemistry of Ni and Pb in a periodically flooded arable soil: fractionation and redox-induced (im)mobilization. J Environ Manag 186:141–150. https://doi.org/10.1016/j.jenvman.2016.06.005

    Article  CAS  Google Scholar 

  • Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Appl or Innov Eng Manag 5:2319–4847

    Google Scholar 

  • Ashraf U, Tang X (2017) Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere 176:141–155. https://doi.org/10.1016/j.chemosphere.2017.02.103

    Article  CAS  Google Scholar 

  • Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environ Sci Pollut Res 22:18318–18332. https://doi.org/10.1007/s11356-015-5463-x

    Article  CAS  Google Scholar 

  • Ashraf U, Hussain S, Anjum SA, Abbas F, Tanveer M, Noor MA, Tang X (2017a) Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity. Plant Physiol Biochem 115:461–471. https://doi.org/10.1016/j.plaphy.2017.04.019

    Article  CAS  Google Scholar 

  • Ashraf U, Kanu AS, Deng Q et al (2017b) Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00259

  • Ashraf U, Hussain S, Akbar N, Anjum SA, Hassan W, Tang X (2018) Water management regimes alter Pb uptake and translocation in fragrant rice. Ecotoxicol Environ Saf 149:128–134. https://doi.org/10.1016/j.ecoenv.2017.11.033

    Article  CAS  Google Scholar 

  • Awasthi K, Sinha P (2013) Nickel stress induced antioxidant defence system in sponge gourd (Luffa cylindrical). J Plant Physiol Pathol 1(1):2

    Google Scholar 

  • Azam I, Afsheen S, Zia A et al (2015) Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. Biomed Res Int 2015. https://doi.org/10.1155/2015/942751

  • Ben Massoud M, Sakouhi L, Chaoui A (2019) Effect of plant growth regulators, calcium and citric acid on copper toxicity in pea seedlings. J Plant Nutr 42:1230–1242. https://doi.org/10.1080/01904167.2019.1609506

    Article  CAS  Google Scholar 

  • Bhalerao SA, Sharma AS, Poojari AC (2015) Toxicity of nickel in plants. Int J Pure Appl Biosci 3:345–355. https://doi.org/10.1086/349961

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Chiappero J, del Rosario Cappellari L, Sosa Alderete LG, Palermo TB, Banchio E (2019) Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind Crop Prod 139:111553

    Article  CAS  Google Scholar 

  • Chen X, Kumari D, Cao CJ et al (2019) A review on remediation technologies for nickel-contaminated soil. Hum Ecol Risk Assess An Int J:1–15. https://doi.org/10.1080/10807039.2018.1539639

  • Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut 167:73–90. https://doi.org/10.1007/s11270-005-8682-9

    Article  CAS  Google Scholar 

  • Chiappero J, del Rosario Cappellari L, Sosa Alderete LG, Palermo TB, Banchio E (2019) Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind Crop Prod 139:111553

    Article  CAS  Google Scholar 

  • dos Reis AR, de Queiroz Barcelos JP, de Souza Osório CRW et al (2017) A glimpse into the physiological, biochemical and nutritional status of soybean plants under Ni-stress conditions. Environ Exp Bot 144:76–87. https://doi.org/10.1016/j.envexpbot.2017.10.006

    Article  CAS  Google Scholar 

  • Darandeh N, Hadavi E (2012) Effect of pre-harvest foliar application of citric acid and malic acid on chlorophyll content and post-harvest vase life of Lilium cv. Brunello Front Plant Sci 2. https://doi.org/10.3389/fpls.2011.00106

  • Dhindsa RS, Plumb-dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101. https://doi.org/10.1093/jxb/32.1.93

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9. https://doi.org/10.1016/S0168-9452(98)00025-9

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Saeed R, Tauqeer HM, Sallah-Ud-Din R, Azam A, Raza N (2017) Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress. Environ Sci Pollut Res 24:21050–21064. https://doi.org/10.1007/s11356-017-9751-5

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Saeed R, Rizwan M, Bukhari SAH, Abbasi GH, Hussain A, Ali B, Zamir MSI, Ahmad I (2019) Combined application of citric acid and 5-aminolevulinic acid improved biomass, photosynthesis and gas exchange attributes of sunflower (Helianthus annuus L.) grown on chromium contaminated soil. Int J Phytoremediation 21:760–767. https://doi.org/10.1080/15226514.2018.1556595

    Article  CAS  Google Scholar 

  • Fatima A, Farid M, Alharby HF et al (2020) Efficacy of fenugreek plant for ascorbic acid assisted phytoextraction of copper (Cu); a detailed study of Cu induced morpho-physiological and biochemical alterations. Chemosphere 251. https://doi.org/10.1016/j.chemosphere.2020.126424

  • Firdaus-e-Bareen (2012) Chelate assisted phytoextraction using oilseed brassicas. In: Journal of Water Resource and Protection. pp 289–311

  • Freitas EV, Nascimento CW, Souza A, Silva FB (2013) Citric acid-assisted phytoextraction of lead: a field experiment. Chemosphere 92:213–217. https://doi.org/10.1016/j.chemosphere.2013.01.103

    Article  CAS  Google Scholar 

  • Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: Human Health and Environmental Toxicology. Int J Environ Res Public Health 17(3):679

    Article  Google Scholar 

  • Gill RA, Ali B, Yang S, Tong C, Islam F, Gill MB, Mwamba TM, Ali S, Mao B, Liu S, Zhou W (2017) Reduced glutathione mediates pheno-ultrastructure, kinome and transportome in chromium-induced Brassica napus L. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.02037

  • Guan Q, Wang F, Xu C, Pan N, Lin J, Zhao R, Yang Y, Luo H (2018) Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China. Chemosphere 193:189–197. https://doi.org/10.1016/j.chemosphere.2017.10.151

    Article  CAS  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208. https://doi.org/10.1016/j.chemosphere.2008.11.023

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Heavy metals in the environment current status, toxic effects on plants and phytoremediation. In: Phytotechnologies Remediation of Environmental Contamination. pp 7–73

  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud J, Rahman A, Inafuku M, Oku H, Fujita M (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18

  • Hasanuzzaman M, Alam MM, Nahar K, Mohsin SM, Bhuyan MHMB, Parvin K, Hawrylak-Nowak B, Fujita M (2019a) Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L. Ecotoxicology 28:261–276. https://doi.org/10.1007/s10646-019-02019-z

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, et al (2019b) Approaches for enhancing abiotic stress tolerance in plants

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  Google Scholar 

  • Helaoui S, Boughattas I, Hattab S, Mkhinini M, Alphonse V, Livet A, Bousserrhine N, Banni M (2020) Physiological, biochemical and transcriptomic responses of Medicago sativa to nickel exposure. Chemosphere. 249:126121. https://doi.org/10.1016/j.chemosphere.2020.126121

    Article  CAS  Google Scholar 

  • Hossain MS, Abdelrahman M, Tran CD, Nguyen KH, Chu HD, Watanabe Y, Hasanuzzaman M, Mohsin SM, Fujita M, Tran LSP (2020) Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environ Pollut 258:113544. https://doi.org/10.1016/j.envpol.2019.113544

    Article  CAS  Google Scholar 

  • Hu L, Zhang Z, Xiang Z, Yang Z (2016) Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum). Front Plant Sci 7:179. https://doi.org/10.3389/fpls.2016.00179

    Article  Google Scholar 

  • Hussain MB, Ali S, Azam A, et al (2013) African journal of agricultural research morphological, physiological and biochemical responses of plants to nickel stress: a review. pdfs.semanticscholar.org 8:1596–1602. https://doi.org/10.5897/AJAR12.407

  • Hussain S, Rengel Z, Qaswar M, Amir M, Zafar-ul-Hye M (2019) Arsenic and heavy metal (cadmium, lead, mercury and nickel) contamination in plant-based foods. In: Plant and Human Health, vol 2. Springer, Cham, pp 447–490

    Chapter  Google Scholar 

  • J Al Mahmud, Hasanuzzaman M, Nahar K, et al (2018) Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf 147:990–1001. https://doi.org/10.1016/j.ecoenv.2017.09.045

  • Jabeen A, Huang X, Aamir M (2015) The challenges of water pollution, threat to public health, flaws of water laws and policies in Pakistan. J Water Resour Prot 07:1516–1526. https://doi.org/10.4236/jwarp.2015.717125

    Article  Google Scholar 

  • Kabra K, Chaudhary R, Sawhney RL (2008) Solar photocatalytic removal of cu(II), Ni(II), Zn(II) and Pb(II): speciation modeling of metal-citric acid complexes. J Hazard Mater 155:424–432. https://doi.org/10.1016/j.jhazmat.2007.11.083

    Article  CAS  Google Scholar 

  • Kanwal U, Ali S, Shakoor MB, Farid M, Hussain S, Yasmeen T, Adrees M, Bharwana SA, Abbas F (2014) EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environ Sci Pollut Res 21:9899–9910. https://doi.org/10.1007/s11356-014-3001-x

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268. https://doi.org/10.1016/j.gexplo.2016.11.021

    Article  CAS  Google Scholar 

  • Khalid A, Farid M, Zubair M, Rizwan M, Iftikhar U, Ishaq HK, Farid S, Latif U, Hina K, Ali S (2020) Efficacy of Alternanthera bettzickiana to Remediate Copper and Cobalt Contaminated Soil Physiological and Biochemical Alterations. Int J Environ Res 1–13

  • Khan MR, Khan MM (2010) Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Aust J Basic Appl Sci 4(6):1036–1046

    CAS  Google Scholar 

  • Kim SH, Lee IS (2010) Comparison of the ability of organic acids and edta to enhance the phytoextraction of metals from a multi-metal contaminated soil. Bull Environ Contam Toxicol 84:255–259. https://doi.org/10.1007/s00128-009-9888-0

    Article  CAS  Google Scholar 

  • Kumar KV, Patra DD (2012) Alteration in yield and chemical composition of essential oil of Mentha piperita L. plant: effect of fly ash amendments and organic wastes. Ecol Eng 47:237–241. https://doi.org/10.1016/j.ecoleng.2012.06.019

    Article  Google Scholar 

  • Lichtenthaler HK (1987) [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382 Academic Press

    Article  CAS  Google Scholar 

  • Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50:6632–6643

    Article  CAS  Google Scholar 

  • Liu D, Li S, Islam E, Chen JR, Wu JS, Ye ZQ, Peng DL, Yan WB, Lu KP (2015a) Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. J Zhejiang Univ Sci B 16:123–130. https://doi.org/10.1631/jzus.B1400107

    Article  CAS  Google Scholar 

  • Liu H, Liu YG, Zeng GM, Xie JL, Zheng BH, Tan XF, Wang DF, Sun ZC, Nie J, Jiang ZJ, Gan C, Liu W, Wang SF (2015b) Mitigation mechanism of cd-contaminated soils by different levels of exogenous low-molecular-weight organic acids and Phytolacca americana. RSC Adv 5:45502–45509. https://doi.org/10.1039/c5ra05700k

    Article  CAS  Google Scholar 

  • Maalik U, Farid M, Zubair M, Ali S, Riwan M, Shafqat M, Ishaq HK (2020) Rice Production, Augmentation, Escalation, and Yield Under Water Stress. In: Agronomic Crops. Springer, Singapore, pp 117–128

    Chapter  Google Scholar 

  • Mallhi ZI, Rizwan M, Mansha A, Ali Q, Asim S, Ali S, Hussain A, Alrokayan SH, Khan HA, Alam P, Ahmad P (2019) Citric acid enhances plant growth, photosynthesis, and phytoextraction of lead by alleviating the oxidative stress in castor beans. Plants 8:525. https://doi.org/10.3390/plants8110525

  • Merlot S (2020) Understanding Nickel Responses in Plants: More than Just an Interaction with Iron Homeostasis. Plant Cell Physiol 61(3):443–444

    Article  Google Scholar 

  • Metzner H, Rau H, Senger H (1965) Untersuchungen zur Synchronisierbarkeit einzelner Pigmentmangel-Mutanten von Chlorella. Planta 65:186–194. https://doi.org/10.1007/BF00384998

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nguyen TXT, Amyot M, Labrecque M (2017) Differential effects of plant root systems on nickel, copper and silver bioavailability in contaminated soil. Chemosphere 168:131–138. https://doi.org/10.1016/j.chemosphere.2016.10.047

    Article  CAS  Google Scholar 

  • Pandey AK, Kumar P, Saxena MJ, Maurya P (2020) Distribution of aromatic plants in the world and their properties. In Feed Addit 89–114. Academic Press

  • Parlak KU (2016) Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings. Elsevier 76:1–5

    Google Scholar 

  • Parmar S, Singh V (2015) Phytoremediation approaches for heavy metal pollution : a review. J Plant Sci Res 2:1–8

    Google Scholar 

  • Parvin K, Nahar K, Hasanuzzaman M et al (2019) Calcium-mediated growth regulation and abiotic stress tolerance in plants. In: Plant Abiotic Stress Tolerance. Springer International Publishing, pp 291–331

  • Pinto E, Catalani LH, Lopes NP, di Mascio P, Colepicolo P (2000) Peridinin as the major biological carotenoid quencher of singlet oxygen in marine algae gonyaulax polyedra. Biochem Biophys Res Commun 268:496–500. https://doi.org/10.1006/bbrc.2000.2142

    Article  CAS  Google Scholar 

  • Qiang T, Fan G, Yufeng G, Toru I, Takeshi K (2018) Desorption characteristics of Cr(III), Mn(II), and Ni(II) in contaminated soil using citric acid and citric acid-containing wastewater. Soils Found 58:50–64. https://doi.org/10.1016/j.sandf.2017.12.001

    Article  Google Scholar 

  • Rathika R, Khalifa AYZ, Srinivasan P, Praburaman L, Kamala-Kannan S, Selvankumar T, Kim W, Govarthanan M (2020) Effect of citric acid and vermi-wash on growth and metal accumulation of Sorghum bicolor cultivated in lead and nickel contaminated soil. Chemosphere:243. https://doi.org/10.1016/j.chemosphere.2019.125327

  • Rawat KS, Kumar R, Singh SK (2020) Distribution of nickel in different agro-climatic zones of Jharkhand, India. Geol Ecol Landscapes 4(1):52–58

    Article  Google Scholar 

  • Saleem MH, Ali S, Rehman M, et al (2020) Plants jute: a potential candidate for phytoremediation of metals-a review. mdpi.com 9:258. https://doi.org/10.3390/plants9020258

  • Sallah-Ud-Din R, Farid M, Saeed R, Ali S, Rizwan M, Tauqeer HM, Bukhari SAH (2017) Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environ Sci Pollut Res 24(21):17669–17678

    Article  CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Shah T, Wahid S, Ilyas M, Hasanuzzaman M (2019) Nitric oxide and phytohormones cross-talk during abiotic stresses responses in plants. In: Reactive Oxygen, Nitrogen and Sulfur Species in Plants. Wiley, pp 533–554

  • Sheetal KR, Singh SD, Anand A, Prasad S (2016) Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. Indian J Plant Physiol 21:219–223. https://doi.org/10.1007/s40502-016-0221-8

    Article  CAS  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharm 43:246–253

    Article  CAS  Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS (2014) Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251:1047–1065. https://doi.org/10.1007/s00709-014-0614-3

    Article  CAS  Google Scholar 

  • Syam N, Wardiyati T, Maghfoer MD, Handayanto E, Ibrahim B, Muchdar A (2016) Effect of accumulator plants on growth and nickel accumulation of soybean on metal-contaminated soil. Agric Agric Sci Procedia 9:13–19. https://doi.org/10.1016/j.aaspro.2016.02.109

    Article  Google Scholar 

  • Tognacchini A, Rosenkranz T, van der Ent A, Machinet GE, Echevarria G, Puschenreiter M (2020) Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. J Environ Manag 254:109798

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Wang N, Hu S, Wu D, Wang Y (2013) Effects of CA and EDTA on growth of Chlorophytum comosum in copper- contaminated soil. Shengtai Xuebao/ Acta Ecol Sin 33:631–639. https://doi.org/10.5846/stxb201112021843

    Article  CAS  Google Scholar 

  • Wang G, Xia X, Yang J, Tariq M, Zhao J, Zhang M, Huang K, Lin K, Zhang W (2020) Exploring the bioavailability of nickel in a soil system: Physiological and histopathological toxicity study to the earthworms (Eisenia fetida). J Hazard Mater 383:121169

    Article  CAS  Google Scholar 

  • Yousaf B, Amina LG et al (2016) The importance of evaluating metal exposure and predicting human health risks in urban-periurban environments influenced by emerging industry. Chemosphere 150:79–89. https://doi.org/10.1016/j.chemosphere.2016.02.007

    Article  CAS  Google Scholar 

  • Yu G, Ma J, Jiang P, et al (2019) The mechanism of plant resistance to heavy metal. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics publishing

  • Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Najeeb U, Iqbal N, Ahmad R (2015) Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf 120:310–317. https://doi.org/10.1016/j.ecoenv.2015.06.020

    Article  CAS  Google Scholar 

  • Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791. https://doi.org/10.1093/oxfordjournals.pcp.a078658

    Article  CAS  Google Scholar 

  • Zhang X, Zhong B, Shafi M, Guo J, Liu C, Guo H, Peng D, Wang Y, Liu D (2018) Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo. Environ Sci Pollut Res 25:18846–18852. https://doi.org/10.1007/s11356-018-2040-0

    Article  CAS  Google Scholar 

  • Zhang H, Zhang LL, Li J et al (2020) Comparative study on the bioaccumulation of lead, cadmium and nickel and their toxic effects on the growth and enzyme defence strategies of a heavy metal accumulator, Hydrilla verticillata (L.f.) Royle. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-06968-0

  • Zhu YL, Zayed AM, Qian JH, Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344. https://doi.org/10.2134/jeq1999.00472425002800010042x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to the Higher Education Commission of Pakistan, University of Gujrat, Pakistan, and GC University Faisalabad, Pakistan, for providing laboratory and financial support granting award of project no. HEC/NRPU/8996/2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mujahid Farid or Shafaqat Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance of research work

Reported results provided hopeful outcomes and sustainable fate of Ni phytoextraction. The present study confirmed the ecotoxicity of Ni in M. piperita and the efficacy of CA amendment to enhance the Ni bioavailability in culture media and to alleviate Ni-induced ecotoxicity. M. piperita significantly accumulate Ni under CA amendment as confirmed from the results.

Electronic supplementary material

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khair, K.U., Farid, M., Ashraf, U. et al. Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages. Environ Sci Pollut Res 27, 27010–27022 (2020). https://doi.org/10.1007/s11356-020-08978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08978-9

Keywords

Navigation