Skip to main content

Advertisement

Log in

Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N2 fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2017) Priority list of hazardous substances. www.atsdr.cdc.gov/spl/index

  • Alamillo JM, Diaz-Leal JL, Sanchez-Moran MV, Pineda M (2010) Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L. Plant Cell Environ 33:1828–1837

    Article  CAS  Google Scholar 

  • Aldesuquy H, Haroun S, Abo-Hamed S, El-Saied AW (2014) Involvement of spermine and spermidine in the control of productivity and biochemical aspects of yielded grains of wheat plants irrigated with waste water. Egypt J Basic Appl Sci 1:16–28

    Article  Google Scholar 

  • Alloway BJ (2012) (Ed), Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (Vol. 22), Springer Science & Business Media

  • Amir H, Lagrange A, Hassaïne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595

    Article  CAS  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Article  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  CAS  Google Scholar 

  • Ballesteros-Almanza L, Altamirano-Hernandez J, Pena-Cabriales JJ, Santoyo G, Sanchez-Yanez JM, Valencia-Cantero E, Macias-Rodriguez L, Lopez-Bucio J, Cardenas-Navarro R, Farias-Rodriguez R (2010) Effect of co-inoculation with mycorrhiza and rhizobia on the nodule trehalose content of different bean genotypes. Open Microbiol J 4:83–92

    CAS  Google Scholar 

  • Barcelos JPQ, Reis HPG, Godoy CV, Gratão PL, Furlani Junior E, Putti FF, Reis AR (2018) Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants. Plant Pathol 67:1502–1513

    Article  CAS  Google Scholar 

  • Bazghaleh N, Hamel C, Gan Y, Tar’an B, Knight JD (2018) Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes. Can J Microbiol 64:265–275

    Article  CAS  Google Scholar 

  • Bécard G, Doner LW, Rolin DB, Douds DD, Pfeffer PE (1991) Identification and quantification of trehalose in vesicular-arbuscular mycorrhizal fungi by in vivo13C NMR and HPLC analyses. New Phytol 118:547–552

    Article  Google Scholar 

  • Bhalerao SA, Sharma AS, Poojari AC (2015) Toxicity of nickel in plants. Int J Pure Appl Biosci 3:345–355

    Google Scholar 

  • Bitterlich M, Franken P, Graefe J (2018) Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Front Plant Sci 9:1–11

    Article  Google Scholar 

  • Bolan NS (1991) A critical review of the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Castro AHF, Young MC, Alvarenga AAD, Alves JD (2001) Influence of photoperiod on the accumulation of allantoin in comfrey plants. Rev Bras Fisiol Veg 13:49–54

    Article  CAS  Google Scholar 

  • Chapman HD, Pratt FP (1961) Ammonium vandate-molybdate method for determination of phosphorus, methods of analysis for soils. Plants Water 1:184–203

    Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2018) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1–13

    Article  Google Scholar 

  • Collard JM, Corbisier P, Diels L, Dong Q, Jeanthon C, Mergeay M, Wuertz S (1994) Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications. FEMS Microbiol Rev 14:405–414

    Article  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  Google Scholar 

  • de Macedo FG, Bresolin JD, Santos EF, Furlan F, da Silva L, Wilson T, Polacco JC, Lavres J (2016) Nickel availability in soil as influenced by liming and its role in soybean nitrogen metabolism. Front Plant Sci 7:1–12

    Article  Google Scholar 

  • de Queiroz Barcelos JP, de Souza Osório CRW, Leal AJF, Alves CZ, Santos EF, Reis HPG, dos Reis AR (2017) Effects of foliar nickel (Ni) application on mineral nutrition status, urease activity and physiological quality of soybean seeds. Aust J Crop Sci 11:184–192

    Article  CAS  Google Scholar 

  • Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635

    Article  CAS  Google Scholar 

  • Dudeja SS, Sheokand S, Kumari S (2012) Legume root nodule devel legume root nodule development and functioning under opment and functioning under tropics and subtropics: perspectives and challenges. Legum Res 35:85–103

    Google Scholar 

  • Duke JM (1980) Production and uses of nickel. In: Nriagu JO (ed) Nickel in the environment. Wiley, New York, pp 51–65

    Google Scholar 

  • Efrose RC, Flemetakis E, Sfichi L, Stedel C, Kouri ED, Udvardi MK, Kotzabasis K, Katinakis P (2008) Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. Planta 228:37–49

    Article  CAS  Google Scholar 

  • Eisler R (1998) Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. Biological science report GS/BRD/BSR- 1998-0001, Patuxent Wildlife Research Center, U.S. Geological Survey, Laurel, MD 20708

  • El Ghachtouli N, Paynot M, Morandi D, Martin-Tanguy J, Gianinazzi S (1995) The effect of polyamines on endomycorrhizal infection of wild-type Pisum sativum, cv. Frisson (nod+ myc+) and two mutants (nod− myc+ and nod− myc−). Mycorrhiza 5:189–192

    CAS  Google Scholar 

  • Estefan G, Sommer R, Ryan J (2013) Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region. pp 170–176

  • FAOSTAT (2017) http://www.fao.org/faostat/en/#data/QC

  • Farías-Rodríguez R, Mellor RB, Arias C, Peña-Cabriales JJ (1998) The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris) and its correlation with resistance to drought stress. Physiol Plant 102:353–359

    Article  Google Scholar 

  • Freitas DS, Rodak BW, dos Reis AR, de Barros RF, de Carvalho TS, Schulze J, Guilherme LRG (2018) Hidden nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes. Front Plant Sci 9:1–16

    Article  Google Scholar 

  • Fujihara S, Abe H, Minakawa Y, Akao S, Yoneyama T (1994) Polyamines in nodules from various plant-microbe symbiotic associations. Plant Cell Physiol 35:1127–1134

    Article  CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. J Plant Growth Regul 54:179–188

    Article  CAS  Google Scholar 

  • Gajewska E, Skłodowska M, Słaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659

    Article  CAS  Google Scholar 

  • Garg N, Bharti A (2018) Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza 28:727–746

    Article  CAS  Google Scholar 

  • Garg N, Pandey R (2016) High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecol 21:57–67

    Article  Google Scholar 

  • Garg N, Sharma A (2019) Role of putrescine (Put) in imparting salt tolerance through modulation of put metabolism, mycorrhizal and rhizobial symbioses in Cajanus cajan (L.) Millsp. Symbiosis 1–16

  • Garg N, Singh S (2018) Mycorrhizal inoculations and silicon fortifications improve rhizobial symbiosis, antioxidant defense, trehalose turnover in pigeon pea genotypes under cadmium and zinc stress. Plant Growth Regul 86:105–119

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2016) Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul 80:5–22

    Article  CAS  Google Scholar 

  • González EM, Gálvez L, Royuela M, Aparicio-Tejo P, Arrese-Igor C (2001) Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability. Agronomie 21:607–613

    Article  Google Scholar 

  • Gonzalez-Chavez C, D'haen J, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297

    Article  CAS  Google Scholar 

  • González-Guerrero M, Matthiadis A, Sáez A, Long TA (2014) Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation. Front Plant Sci 13:5–45

    Google Scholar 

  • González-Párraga P, Hernández JA, Argüelles JC (2003) Role of antioxidant enzymatic defences against oxidative stress (H2O2) and the acquisition of oxidative tolerance in Candida albicans. Yeast 20:1161–1169

    Article  CAS  Google Scholar 

  • Gopal R, Neelam C, Tapan A (2014) Effect of variation in nickel concentration on growth of maize plant: a comparative over view for pot and Hoagland culture. Res J Chem Sci 4:30–32

    Google Scholar 

  • Gray CW, Mclaren RG (2006) Soil factors affecting heavy metal solubility in some New Zealand soils. Water Air Soil Pollut 175:3–14

    Article  CAS  Google Scholar 

  • Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036

    Article  CAS  Google Scholar 

  • Haddad SA, Tabatabai MA, Abdel-Moneim AMA, Loynachan TE (2015) Inhibition of nodulation and nitrogen nutrition of leguminous crops by selected heavy metals. Air Soil Water Res 8:1–7

    Article  CAS  Google Scholar 

  • Hartree EF (1957) Haematin compounds. In: Paech K, Tracey MV (eds) Modern methods of plant analysis. Springer-Verlag, Germany, Berlin, pp 197–245

    Google Scholar 

  • Herdina JA, Silsbury JH (1990) Estimating nitrogenase activity of faba bean (Vicia faba) by acetylene reduction (AR) assay. Aust J Plant Physiol 17:489–502

    CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Hogan ME, Swift IE, Done J (1983) Urease assay and ammonia release from leaf tissues. Phytochemistry 22:663–667

    Article  CAS  Google Scholar 

  • Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511

    Article  CAS  Google Scholar 

  • Ishtiaq S, Mahmood S (2011) Phytotoxicity of nickel and its accumulation in tissues of three Vigna species at their early growth stages. J Appl Bot Food Qual 84:223–228

    CAS  Google Scholar 

  • Iturriaga G, Suárez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int Mol Sci 10:3793–3810

    Article  CAS  Google Scholar 

  • Jamal A, Ayub N, Usman M, Khan AG (2002) Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. Int J Phytorem 4:205–221

    Article  CAS  Google Scholar 

  • Jamil M, Zeb S, Anees M, Roohi A, Ahmad I, Rehman S, Rha ES (2014) Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice. Int J Phytorem 16:554–571

    Article  CAS  Google Scholar 

  • Javaid A (2010) Role of arbuscular mycorrhizal fungi in nitrogen fixation in legumes. In: Khan MS, Musarrat J, Zaidi A (eds) Microbes for legume improvement. Springer, Vienna, pp 409–426

    Chapter  Google Scholar 

  • Jiménez Bremont JF, Marina M, Guerrero-González MD, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A (2014) Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front Plant Sci 5:1–14

    Google Scholar 

  • Jorge JA, Polizeli MDLT, Thevelein JM, Terenzi HF (1997) Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol Lett 154:165–171

    Article  CAS  Google Scholar 

  • Joseph J, Reddy J, Sayantan D (2018) Effect of nickel uptake on selected growth parameters of Amaranthus viridis L. J Appl Nat Sci 10:1011–1017

    Article  CAS  Google Scholar 

  • Jules M, Beltran G, François J, Parrou JL (2008) New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl Environ Microbiol 74:605–614

    Article  CAS  Google Scholar 

  • Kasprzak KS (1987) Nickel. Adv Mod Environ Toxicol 11:145–183

    CAS  Google Scholar 

  • Ker K, Charest C (2010) Nickel remediation by AM-colonized sunflower. Mycorrhiza 20:399–406

    Article  CAS  Google Scholar 

  • Khan MR, Khan MM (2010) Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Aust J Basic Appl Sci 4:1036–1046

    CAS  Google Scholar 

  • Khoshgoftarmanesh AH, Bahmanziari H, Sanaeiostovar A (2014) Responses of cucumber to deficient and toxic amounts of nickel in nutrient solution containing urea as nitrogen source. Biol Plant 58:524–530

    Article  CAS  Google Scholar 

  • King CA, Purcell LC (2005) Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiol 137:389–1396

    Article  CAS  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Bystrova EI, Ivanov VB (2007) Effects of heavy metals and strontium on division of root cap cells and meristem structural organization. Russ J Plant Physiol 54:257–266

    Article  CAS  Google Scholar 

  • Krasensky J, Broyart C, Rabanal FA, Jonak C (2014) The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance. Antioxid Redox Signal 21:1289–1304

    Article  CAS  Google Scholar 

  • Kyllingsbæk A (1975) Extraction and colorimetric determination of urea in plants. Acta Agric Scand 25:109–112

    Article  Google Scholar 

  • Ladrera R, Marino D, Larrainzar E, González EM, Arrese-Igor C (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145:539–546

    Article  CAS  Google Scholar 

  • Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28

    Article  CAS  Google Scholar 

  • Lindner RC (1944) Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol 19:76

    Article  CAS  Google Scholar 

  • López M, Herrera-Cervera JA, Lluch C, Tejera NA (2006) Trehalose metabolism in root nodules of the model legume Lotus japonicus in response to salt stress. Physiol Plant 128:701–709

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  Google Scholar 

  • Marguí E, Queralt I, Carvalho ML, Hidalgo M (2007) Assessment of metal availability to vegetation (Betula pendula) in Pb-Zn ore concentrate residues with different features. Environ Pollut 145:179–184

    Article  CAS  Google Scholar 

  • Martins LL, Mourato MP, Baptista S, Reis R, Carvalheiro F, Almeida AM, Fevereiro P, Cuypers A (2014) Response to oxidative stress induced by cadmium and copper in tobacco plants (Nicotiana tabacum) engineered with the trehalose-6-phosphate synthase gene (AtTPS1). Acta Physiol Plant 36:755–765

    Article  CAS  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mehlich A (1953) Determination of P, Ca, mg, K, Na and NH4. In: Short test methods used in soil testing division. Department of Agriculture, Raleigh

  • Miller GL (1959) Use of dinitrosulphosalicylic acid (DNSA) reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M, Tran LSP (2015) Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 5:11433

    Article  CAS  Google Scholar 

  • Müller J, Xie ZP, Staehelin C, Mellor RB, Boller T, Wiemken A (1994) Trehalose and trehalase in root nodules from various legumes. Physiol Plant 90:86–92

    Article  Google Scholar 

  • Müller J, Aeschbacher RA, Wingler A, Boller T, Wiemken A (2001) Trehalose and trehalase in Arabidopsis. Plant Physiol 125:1086–1093

    Article  Google Scholar 

  • Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261

    Article  CAS  Google Scholar 

  • Nahar K, Rahman M, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Environ Sci Pollut Res 23:21206–21218

    Article  CAS  Google Scholar 

  • National Academy of Sciences (NAS) (1975) Nickel, medical and biological effects of environmental pollutants. National Research Council, National Academy of Sciences, Washington

    Google Scholar 

  • Nelson DW, Sommers LE (1973) Determination of Total nitrogen in plant material 1. Agron J 65:109–112

    Article  CAS  Google Scholar 

  • Ocón A, Hampp R, Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174:879–891

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) methods of soil analysis, Agron. No. 9, part 2- chemical and microbiological properties, 2nd edn, American society agronomy, Madison, pp 403-430

  • Padilla L, Krämer R, Stephanopoulos G, Agosin E (2004) Overproduction of trehalose: heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacterium glutamicum. Appl Environ Microbiol 70:370–376

    Article  CAS  Google Scholar 

  • Page V, Weisskopf L, Feller U (2006) Heavy metals in white lupin: uptake, root to shoot transfer and redistribution within the plant. New Phytol 171:329–341

    Article  CAS  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Panwar NR, Saha JK, Adhikari T, Kundu S, Biswas AK, Rathore A, Ramana S, Srivastava S, Subba RA (2010) Soil and water pollution in India: some case studies. IISS technical bulletin. Indian Institute of Soil Science, Bhopal

  • Pélissier HC, Tegeder M (2007) PvUPS1 plays a role in source-sink transport of allantoin in French bean (Phaseolus vulgaris). Funct Plant Biol 34:282–291

    Article  Google Scholar 

  • Polacco JC, Mazzafera P, Tezotto T (2013) Opinion-nickel and urease in plants: still many knowledge gaps. Plant Sci 199:79–90

    Article  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28:393–404

    Article  CAS  Google Scholar 

  • Rao KM, Sresty T (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Rathor G, Chopra N, Adhikari T (2014) Nickel as a pollutant and its management. Int Res J Environ Sci 3:94–98

    CAS  Google Scholar 

  • Saad R, Kobaissi A, Robin C, Echevarria G, Benizri E (2016) Nitrogen fixation and growth of Lens culinaris as affected by nickel availability: a pre-requisite for optimization of agromining. Environ Exp Bot 131:1–9

    Article  CAS  Google Scholar 

  • Sachan P, Lal N (2017) An overview of nickel (Ni2+) essentiality, toxicity and tolerance strategies in plants. Asian J Biol 2:1–15

    Article  Google Scholar 

  • Sairam RK, Deshmukh PS, Shukla DS (1997) Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J Agron Crop Sci 178:171–178

    Article  CAS  Google Scholar 

  • Sakamoto T, Bryant DA (2001) Requirement of nickel as an essential micronutrient for the utilization of urea in the marine cyanobacterium Synechococcus sp. PCC 7002. Microbes Environ 16:177–184

    Article  Google Scholar 

  • Salminen SO, Streeter JG (1986) Enzymes of alpha, alpha-trehalose metabolism in soybean nodules. Plant Physiol 81:538–541

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Álvarez CL, Menéndez AB, Pieckenstain FL, Albertó EO, Ruiz OA (2004) Ornithine and arginine decarboxylase activities and effect of some polyamine biosynthesis inhibitors on Gigasporarosea germinating spores. FEMS Microbiol Lett 230:115–121

    Article  CAS  Google Scholar 

  • Sanz-Cobena A, Misselbrook TH, Arce A, Mingot JI, Diez JA, Vallejo A (2008) An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditions. Agric Ecol Environ 126:243–249

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Shabani L, Sabzalian MR (2016) Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 26:67–76

    Article  CAS  Google Scholar 

  • Shafeeq A, Butt ZA, Muhammad S (2012) Response of nickel pollution on physiological and biochemical attributes of wheat (Triticum aestivum L.) var. Bhakar-02. Pak J Bot 44:111–116

    CAS  Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018) Nickel; whether toxic or essential for plants and environment-a review. Plant Physiol Biochem 132:641–651

    Article  CAS  Google Scholar 

  • Shaker-Koohi S (2014) Role of arbuscular mycorrhizal (AM) fungi in phytoremediation of soils contaminated: a review. Int J Adv Biol Biomed Res 2:1854–1864

    CAS  Google Scholar 

  • Sharma A, Dhiman A, Dhankar J (2013) Detection of total and DTPA extractable nickel and cadmium in soil and plants irrigated with industrial effluents and sewage waste water. In: Proceedings of International conference on ecological, environmental and biological sciences 31:197–201

  • Shevyakova NI, Il'ina EN, Stetsenko LA, Kuznetsov VV (2011) Nickel accumulation in rape shoots (Brassica napus L.) increased by putrescine. Int J Phytorem 13:345–356

    Article  CAS  Google Scholar 

  • Singh AK, Hamel C, DePauw RM, Knox RE (2012) Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Can J Microbiol 58:293–302

    Article  CAS  Google Scholar 

  • Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol 144:575–581

    Article  CAS  Google Scholar 

  • Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV (2013) Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol 10:1129–1140

    Article  CAS  Google Scholar 

  • Stancheva I, Geneva M, Zehirov G, Tsvetkova G, Hristozkova M, Georgiev G (2006) Effects of combined inoculation of pea plants with arbuscular mycorrhizal fungi and Rhizobium on nodule formation and nitrogen fixing activity. Gen Appl Plant Physiol 4:61–66

    Google Scholar 

  • Streeter JG, Salminen SO (1988) Carbon metabolism and the exchange of metabolites between symbionts in legume nodules. In: O’Gara F, Manian S, Drevon JJ (eds) Physiological limitations and the genetic improvement of symbiotic nitrogen fixation. Springer, Dordrecht, pp 11–20

    Chapter  Google Scholar 

  • Streeter JG, Strimbu CE (1998) Simultaneous extraction and derivatization of carbohydrates from green plant tissues for analysis by gas–liquid chromatography. Anal Biochem 259:253–257

    Article  CAS  Google Scholar 

  • Takagi H, Watanabe S, Tanaka S, Matsuura T, Mori IC, Hirayama T, Shimada H, Sakamoto A (2018) Disruption of ureide degradation affects plant growth and development during and after transition from vegetative to reproductive stages. BMC Plant Biol 18:1–16

    Article  CAS  Google Scholar 

  • Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, Ferrol N (2014) Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 5:1–13

    Article  Google Scholar 

  • Terakado J, Yoneyama T, Fujihara S (2006) Shoot-applied polyamines suppress nodule formation in soybean (Glycine max). J Plant Physiol 163:497–505

    Article  CAS  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Plant 240:1–18

    Article  CAS  Google Scholar 

  • Todd CD, Tipton PA, Blevins DG, Piedras P, Pineda M, Polacco JC (2005) Update on ureide degradation in legumes. J Exp Bot 57:5–12

    Article  Google Scholar 

  • Twanabasu BR, Stevens KJ, Venables BJ (2013) The effects of triclosan on spore germination and hyphal growth of the arbuscular mycorrhizal fungus Glomus intraradices. Sci Total Environ 454:51–60

    Article  CAS  Google Scholar 

  • Vadez V, Sinclair T, Serraj R (2000) Asparagine and ureide accumulation in nodules and shoots as feedback inhibitors of N2 fixation in soybean. Physiol Plant 11:215–223

    Article  Google Scholar 

  • Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in northern Italy. Environ Microbiol 8:971–983

    Article  Google Scholar 

  • Vassileva V, Ignatov G (1999) Polyamine-induced changes in symbiotic parameters of the Galegaorientalis-Rhizobium galegae nitrogen-fixing system. Plant Soil 210:83–91

    Article  CAS  Google Scholar 

  • Vatansever R, Ozyigit II, Filiz E (2017) Essential and beneficial trace elements in plants, and their transport in roots: a review. Appl Biochem Biotechnol 181:464–482

    Article  CAS  Google Scholar 

  • Vogels GD, Van der Drift C (1970) Differential analyses of glyoxylate derivatives. Anal Biochem 33:143–157

    Article  CAS  Google Scholar 

  • Wang X, Shi G, Xu Q, Hu J (2007) Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol 164:1062–1070

    Article  CAS  Google Scholar 

  • Werner AK, Romeis T, Witte CP (2010) Ureide catabolism in Arabidopsis thaliana and Escherichia coli. Nat Chem Biol 6:19–21

    Article  CAS  Google Scholar 

  • Wheeler CT, Hughes LT, Oldroyd J, Pulford ID (2001) Effects of nickel on Frankia and its symbiosis with Alnus glutinosa (L.) Gaertn. Plant Soil 231:81–90

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Liu CY, Lu T (2012) Interacted effect of arbuscular mycorrhizal fungi and polyamines on root system architecture of Citrus seedlings. J Integr Agric 11:1675–1681

    Article  CAS  Google Scholar 

  • Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M (2015) Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Environ Sci Pollut Res 22:13179–13193

    Article  CAS  Google Scholar 

  • Yao Q, Wang LR, Xing QX, Chen JZ, Zhu HH (2010) Exogenous polyamines influence root morphogenesis and arbuscular mycorrhizal development of Citrus limonia seedlings. Plant Growth Regul 60:27–33

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol 86:1–17

    Article  CAS  Google Scholar 

  • Zacarías JJJ, Altamirano-Hernández J, Cabriales JJP (2004) Nitrogenase activity and trehalose content of nodules of drought-stressed common beans infected with effective (fix+) and ineffective (fix−) rhizobia. Soil Biol Biochem 36:1975–1981

    Article  CAS  Google Scholar 

  • Zahran HH (2010) Legumes-microbes interactions under stressed environments. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 353–387

    Chapter  Google Scholar 

  • Zhang L, Shi Z, Zhang J, Jiang Z, Wang F, Huang X (2015) Spatial and seasonal characteristics of dissolved heavy metals in the east and West Guangdong coastal waters, South China. Mar Pollut Bull 95:419–426

    Article  CAS  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the University Grants Commission (UGC) and the Department of Biotechnology, Government of India, for providing financial support in undertaking this research work. We are also thankful to PAU, Panjab; IARI, New Delhi, India; and The Energy and Resource Institute (TERI), New Delhi, for providing the biological research materials. The authors are also thankful to Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University, Chandigarh, India, for WD-XRF analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Garg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Ni stress negatively affects growth and mycorrhizal and rhizobial symbioses in pigeon pea

• Among the three PAs (Put, Spd, Spm), Put is most effective in alleviating Ni stress

• AM is more effective than PAs in improving biomass, ureide, and trehalose biosynthesis

• PAs complemented AM by enhancing symbiotic efficiency and nutrient acquisition

• +Put+AM is identified as a promising approach in imparting Ni tolerance to pigeon pea

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, N., Saroy, K. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress. Environ Sci Pollut Res 27, 3043–3064 (2020). https://doi.org/10.1007/s11356-019-07300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07300-6

Keywords

Navigation