Skip to main content
Log in

Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The fate and risk assessment of silver nanoparticles (Ag NPs) is an important environmental health issue. The toxic effects, mechanisms, and modes of action of Ag NPs on aquatic organisms have been extensively determined in the laboratory. However, knowledge gaps and discrepancies exist between laboratory studies and realistic environmental research; such inconsistencies hinder the development of health and safety regulations. To bridge these gaps, this review summarizes how environmental conditions and the physicochemical properties of Ag NPs affect the inconsistent findings between laboratory studies and realistic environmental research. Moreover, this paper systematically reviews different toxic effects of Ag NPs in a realistic environment and compares these effects with those in the laboratory, which is helpful for assessing the environmental fate and risk of Ag NPs. The hazardous effects of Ag NPs on the whole aquatic ecosystem with low concentrations (μg L−1) and long-term periods (months to years) are detailed. Furthermore, two perspectives of future toxicity studies of Ag NPs in realistic freshwater environments are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2

Similar content being viewed by others

References

  • Abramenko NB, Demidova TB, Abkhalimov capital Ie C, Ershov BG, Krysanov EY, Kustov LM (2018) Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater 347:89–94

    Article  CAS  Google Scholar 

  • Afshinnia K, Baalousha M (2017) Effect of phosphate buffer on aggregation kinetics of citrate-coated silver nanoparticles induced by monovalent and divalent electrolytes. Sci Total Environ 581-582:268–276

    Article  CAS  Google Scholar 

  • Aiken GR, Hsu-Kim H, Ryan JN (2011) Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol 45:3196–3201

    Article  CAS  Google Scholar 

  • Angel BM, Batley GE, Jarolimek CV, Rogers NJ (2013) The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93:359–365

    Article  CAS  Google Scholar 

  • Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:14

    Article  CAS  Google Scholar 

  • Axson JL, Stark DI, Bondy AL, Capracotta SS, Maynard AD, Philbert MA, Bergin IL, Ault AP (2015) Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J Phys Chem C 119:20632–20641

    Article  CAS  Google Scholar 

  • Baalousha M, Nur Y, Römer I, Tejamaya M, Lead JR (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 454-455:119–131

    Article  CAS  Google Scholar 

  • Baptista MS, Miller RJ, Halewood ER, Hanna SK, Almeida CMR, Vasconcelos VM, Keller AA, Lenihan HS (2015) Impacts of silver nanoparticles on a natural estuarine plankton community. Environ Sci Technol 49:12968–12974

    Article  CAS  Google Scholar 

  • Baun A, Sayre P, Steinhäuser KG, Rose J (2017) Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials. NanoImpact 8:1–10

    Article  Google Scholar 

  • Blakelock GC, Xenopoulos MA, Norman BC, Vincent JL, Frost PC (2016) Effects of silver nanoparticles on bacterioplankton in a boreal lake. Freshw Biol 61:2211–2220

    Article  CAS  Google Scholar 

  • Burello E (2017) Review of (Q)SAR models for regulatory assessment of nanomaterials risks. NanoImpact 8:48–58

    Article  Google Scholar 

  • Button M, Auvinen H, Van Koetsem F, Hosseinkhani B, Rousseau D, Weber KP, Du Laing G (2016) Susceptibility of constructed wetland microbial communities to silver nanoparticles: a microcosm study. Ecol Eng 97:476–485

    Article  Google Scholar 

  • Chae Y, An Y-J (2016) Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Aquat Toxicol 173:94–104

    Article  CAS  Google Scholar 

  • Chen S, Goode AE, Sweeney S, Theodorou IG, Thorley AJ, Ruenraroengsak P, Chang Y, Gow A, Schwander S, Skepper J, Zhang J, Shaffer MS, Chung KF, Tetley TD, Ryan MP, Porter AE (2013) Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale 5:9839–9847

    Article  CAS  Google Scholar 

  • Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409:2443–2450

    Article  CAS  Google Scholar 

  • Choi O, Clevenger TE, Deng B, Surampalli RY, Ross L Jr, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886

    Article  CAS  Google Scholar 

  • Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI, Brewer T, Davis J, Petersen EJ, Wood L (2012) Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci Total Environ 421-422:267–272

    Article  CAS  Google Scholar 

  • Collin B, Tsyusko OV, Starnes DL, Unrine JM (2016) Effect of natural organic matter on dissolution and toxicity of sulfidized silver nanoparticles to Caenorhabditis elegans. Environ Sci Nano 3:728–736

    Article  CAS  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8:e57189

    Article  CAS  Google Scholar 

  • Colman BP, Espinasse B, Richardson CJ, Matson CW, Lowry GV, Hunt DE, Wiesner MR, Bernhardt ES (2014) Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol 48:5229–5236

    Article  CAS  Google Scholar 

  • Conine AL, Rearick DC, Xenopoulos MA, Frost PC (2017) Variable silver nanoparticle toxicity to Daphnia in boreal lakes. Aquat Toxicol 192:1–6

    Article  CAS  Google Scholar 

  • Contreras EQ, Puppala HL, Escalera G, Zhong W, Colvin VL (2014) Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. Environ Toxicol Chem 33:2716–2723

    Article  CAS  Google Scholar 

  • Das P, Williams CJ, Fulthorpe RR, Hoque ME, Metcalfe CD, Xenopoulos MA (2012) Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environ Sci Technol 46:9120–9128

    Article  CAS  Google Scholar 

  • Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47:4140–4146

    Article  CAS  Google Scholar 

  • Doolette CL, McLaughlin MJ, Kirby JK, Navarro DA (2015) Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): effect of agricultural amendments on plant uptake. J Hazard Mater 300:788–795

    Article  CAS  Google Scholar 

  • Ellis L-JA, Baalousha M, Valsami-Jones E, Lead JR (2018) Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles. Chemosphere 191:616–625

    Article  CAS  Google Scholar 

  • Espinasse BP, Geitner NK, Schierz A, Therezien M, Richardson CJ, Lowry GV, Ferguson L, Wiesner MR (2018) Comparative persistence of engineered nanoparticles in a complex aquatic ecosystem. Environ Sci Technol 52:4072–4078

    Article  CAS  Google Scholar 

  • Furtado LM, Norman BC, Xenopoulos MA, Frost PC, Metcalfe CD, Hintelmann H (2015) Environmental fate of silver nanoparticles in boreal lake ecosystems. Environ Sci Technol 49:8441–8450

    Article  CAS  Google Scholar 

  • Furtado LM, Bundschuh M, Metcalfe CD (2016) Monitoring the fate and transformation of silver nanoparticles in natural waters. Bull Environ Contam Toxicol 97:449–455

    Article  CAS  Google Scholar 

  • Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, Tyler CR, Fernandes TF (2011) Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J Environ Monit 13:1227–1235

    Article  CAS  Google Scholar 

  • Gallego-Urrea JA, Hammes J, Cornelis G, Hassellöv M (2016) Coagulation and sedimentation of gold nanoparticles and illite in model natural waters: influence of initial particle concentration. NanoImpact 3-4:67–74

    Article  Google Scholar 

  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Grun AY, App CB, Breidenbach A, Meier J, Metreveli G, Schaumann GE, Manz W (2018) Effects of low dose silver nanoparticle treatment on the structure and community composition of bacterial freshwater biofilms. PLoS One 13:e0199132

    Article  CAS  Google Scholar 

  • Guo X, Yin Y, Tan Z, Liu J (2018) Environmentally relevant freeze-thaw cycles enhance the redox-mediated morphological changes of silver nanoparticles. Environ Sci Technol 52:6928–6935

    Article  CAS  Google Scholar 

  • Hartmann NB, Ågerstrand M, Lützhøft H-CH, Baun A (2017) NanoCRED: a transparent framework to assess the regulatory adequacy of ecotoxicity data for nanomaterials–relevance and reliability revisited. NanoImpact 6:81–89

    Article  Google Scholar 

  • Helmlinger J, Sengstock C, Groß-Heitfeld C, Mayer C, Schildhauer TA, Köller M, Epple M (2016) Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv 6:18490–18501

    Article  CAS  Google Scholar 

  • Hu Y, Chen X, Yang K, Lin D (2018) Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water. Sci Total Environ 618:838–846

    Article  CAS  Google Scholar 

  • Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–5571

    Article  CAS  Google Scholar 

  • Jiang HS, Yin L, Ren NN, Xian L, Zhao S, Li W, Gontero B (2017) The effect of chronic silver nanoparticles on aquatic system in microcosms. Environ Pollut 223:395–402

    Article  CAS  Google Scholar 

  • Jimenez-Lamana J, Slaveykova VI (2016) Silver nanoparticle behaviour in lake water depends on their surface coating. Sci Total Environ 573:946–953

    Article  CAS  Google Scholar 

  • Jung Y, Metreveli G, Park C-B, Baik S, Schaumann GE (2018) Implications of Pony Lake fulvic acid for the aggregation and dissolution of oppositely charged surface-coated silver nanoparticles and their ecotoxicological effects on Daphnia magna. Environ Sci Technol 52:436–445

    Article  CAS  Google Scholar 

  • Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47:3866–3877

    Article  CAS  Google Scholar 

  • Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554

    Article  CAS  Google Scholar 

  • Lau BLT, Hockaday WC, Ikuma K, Furman O, Decho AW (2013) A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloids Surf Physicochem Eng Asp 435:22–27

    Article  CAS  Google Scholar 

  • Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45:5260–5266

    Article  CAS  Google Scholar 

  • Li X, Lenhart JJ, Walker HW (2010) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26:16690–16698

    Article  CAS  Google Scholar 

  • Li X, Lenhart JJ, Walker HW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28:1095–1104

    Article  CAS  Google Scholar 

  • Li L, Hartmann G, Doblinger M, Schuster M (2013) Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol 47:7317–7323

    Article  CAS  Google Scholar 

  • Li L, Wu H, Ji C, van Gestel CA, Allen HE, Peijnenburg WJ (2015) A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles. Ecotoxicol Environ Saf 119:66–73

    Article  CAS  Google Scholar 

  • Li L, Stoiber M, Wimmer A, Xu Z, Lindenblatt C, Helmreich B, Schuster M (2016a) To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver-based nanoparticles in surface waters? Environ Sci Technol 50:6327–6333

    Article  CAS  Google Scholar 

  • Li L, Zhou Q, Geng F, Wang Y, Jiang G (2016b) Formation of nanosilver from silver sulfide nanoparticles in natural waters by photoinduced Fe(II, III) redox cycling. Environ Sci Technol 50:13342–13350

    Article  CAS  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  Google Scholar 

  • Liu J, Pennell KG, Hurt RH (2011) Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol 45:7345–7353

    Article  CAS  Google Scholar 

  • Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46:7027–7036

    Article  CAS  Google Scholar 

  • Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, Brown GE, Lowry GV (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–759

    Article  CAS  Google Scholar 

  • Mackevica A, Skjolding LM, Gergs A, Palmqvist A, Baun A (2015) Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions. Aquat Toxicol 161:10–16

    Article  CAS  Google Scholar 

  • Manoharan V, Ravindran A, Anjali CH (2014) Mechanistic insights into interaction of humic acid with silver nanoparticles. Cell Biochem Biophys 68:127–131

    Article  CAS  Google Scholar 

  • Martin MN, Allen AJ, MacCuspie RI, Hackley VA (2014) Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles. Langmuir 30:11442–11452

    Article  CAS  Google Scholar 

  • Metreveli G, Frombold B, Seitz F, Grun A, Philippe A, Rosenfeldt RR, Bundschuh M, Schulz R, Manz W, Schaumann GE (2016) Impact of chemical composition of ecotoxicological test media on the stability and aggregation status of silver nanoparticles. Environ Sci Nano 3:418–433

    Article  CAS  Google Scholar 

  • Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–150

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Musee N (2011) Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol 30:1181–1195

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59

    Article  CAS  Google Scholar 

  • Odzak N, Kistler D, Sigg L (2017) Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environ Pollut 226:1–11

    Article  CAS  Google Scholar 

  • Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85

    Article  CAS  Google Scholar 

  • Park HG, Kim JI, Chang KH, Lee BC, Eom IC, Kim P, Nam DH, Yeo MK (2018) Trophic transfer of citrate, PVP coated silver nanomaterials, and silver ions in a paddy microcosm. Environ Pollut 235:435–445

    Article  CAS  Google Scholar 

  • Peijnenburg WJGM, Baalousha M, Chen J, Chaudry Q, Von der kammer F, Kuhlbusch TAJ, Lead J, Nickel C, Quik JTK, Renker M, Wang Z, Koelmans AA (2015) A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit Rev Environ Sci Technol 45:2084–2134

    Article  CAS  Google Scholar 

  • Peretyazhko TS, Zhang Q, Colvin VL (2014) Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48:11954–11961

    Article  CAS  Google Scholar 

  • Peters RJB, van Bemmel G, Milani NBL, den Hertog GCT, Undas AK, van der Lee M, Bouwmeester H (2018) Detection of nanoparticles in Dutch surface waters. Sci Total Environ 621:210–218

    Article  CAS  Google Scholar 

  • Pokhrel LR, Dubey B, Scheuerman PR (2013) Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles. Environ Sci Technol 47:12877–12885

    Article  CAS  Google Scholar 

  • Rajala JE, Maenpaa K, Vehniainen ER, Vaisanen A, Scott-Fordsmand JJ, Akkanen J, Kukkonen JV (2016) Toxicity testing of silver nanoparticles in artificial and natural sediments using the benthic organism Lumbriculus variegatus. Arch Environ Contam Toxicol 71:405–414

    Article  CAS  Google Scholar 

  • Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellov M, Taylor C, Soares AM, Loureiro S (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466–467:232–241

    Article  CAS  Google Scholar 

  • Ribeiro F, Van Gestel CAM, Pavlaki MD, Azevedo S, Soares A, Loureiro S (2017) Bioaccumulation of silver in Daphnia magna: waterborne and dietary exposure to nanoparticles and dissolved silver. Sci Total Environ 574:1633–1639

    Article  CAS  Google Scholar 

  • Robertson AI, Bunn SE, Boon PI, Walker KF (1999) Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Mar Freshw Res 50:813–829

    Article  CAS  Google Scholar 

  • Römer I, Wang ZW, Merrifield RC, Palmer RE, Lead J (2016) High resolution STEM-EELS study of silver nanoparticles exposed to light and humic substances. Environ Sci Technol 50:2183–2190

    Article  CAS  Google Scholar 

  • Sakka Y, Skjolding LM, Mackevica A, Filser J, Baun A (2016) Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna. Aquat Toxicol 177:526–535

    Article  CAS  Google Scholar 

  • Sandra FG, M DP, Lopes R, Hammes J, Gallego-Urrea JA, Hassellov M, Jurkschat K, Crossley A, Loureiro S (2017) Effects of silver nanoparticles on the freshwater snail Physa acuta: the role of test media and snails' life cycle stage. Environ Toxicol Chem 36:243–253

    Article  CAS  Google Scholar 

  • Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, Nowinski DT, Luong P, Tran C, Karunaratne N, Pham D, Lin XX, Falciani F, Higgins CP, Ranville JF, Vulpe CD, Gilbert B (2013) Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 7:10681–10694

    Article  CAS  Google Scholar 

  • Seitz F, Rosenfeldt RR, Storm K, Metreveli G, Schaumann GE, Schulz R, Bundschuh M (2015) Effects of silver nanoparticle properties, media pH and dissolved organic matter on toxicity to Daphnia magna. Ecotoxicol Environ Saf 111:263–270

    Article  CAS  Google Scholar 

  • Sendra M, Yeste MP, Gatica JM, Moreno-Garrido I, Blasco J (2017) Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere 179:279–289

    Article  CAS  Google Scholar 

  • Shen MH, Zhou XX, Yang XY, Chao JB, Liu R, Liu JF (2015) Exposure medium: key in identifying free Ag+ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. Sci Rep 5:9674

    Article  CAS  Google Scholar 

  • Shi J, Xu B, Sun X, Ma C, Yu C, Zhang H (2013) Light induced toxicity reduction of silver nanoparticles to Tetrahymena pyriformis: effect of particle size. Aquat Toxicol 132-133:53–60

    Article  CAS  Google Scholar 

  • Sohn EK, Johari SA, Kim TG, Kim JK, Kim E, Lee JH, Chung YS, Yu IJ (2015) Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int 2015:12

    Google Scholar 

  • Sorensen SN, Holten Lutzhoft HC, Rasmussen R, Baun A (2016) Acute and chronic effects from pulse exposure of D. magna to silver and copper oxide nanoparticles. Aquat Toxicol 180:209–217

    Article  CAS  Google Scholar 

  • Starnes DL, Unrine JM, Starnes CP, Collin BE, Oostveen EK, Ma R, Lowry GV, Bertsch PM, Tsyusko OV (2015) Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. Environ Pollut 196:239–246

    Article  CAS  Google Scholar 

  • Stegemeier JP, Schwab F, Colman BP, Webb SM, Newville M, Lanzirotti A, Winkler C, Wiesner MR, Lowry GV (2015) Speciation matters: bioavailability of silver and silver sulfide nanoparticles to alfalfa (Medicago sativa). Environ Sci Technol 49:8451–8460

    Article  CAS  Google Scholar 

  • Taylor C, Matzke M, Kroll A, Read DS, Svendsen C, Crossley A (2016) Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environ Sci Nano 3:396–408

    Article  CAS  Google Scholar 

  • Thalmann B, Voegelin A, Sinnet B, Morgenroth E, Kaegi R (2014) Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environ Sci Technol 48:4885–4892

    Article  CAS  Google Scholar 

  • Thalmann B, Voegelin A, Morgenroth E, Kaegi R (2016) Effect of humic acid on the kinetics of silver nanoparticle sulfidation. Environ Sci Nano 3:203–212

    Article  CAS  Google Scholar 

  • Vincent JL, Paterson MJ, Norman BC, Gray EP, Ranville JF, Scott AB, Frost PC, Xenopoulos MA (2017) Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton. Ecotoxicology 26:502–515

    Article  CAS  Google Scholar 

  • Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    Article  CAS  Google Scholar 

  • Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127

    Article  CAS  Google Scholar 

  • Yin Y, Tan Z, Hu L, Yu S, Liu J, Jiang G (2017) Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications. Chem Rev 117:4462–4487

    Article  CAS  Google Scholar 

  • Yuan L, Richardson CJ, Ho M, Willis CW, Colman BP, Wiesner MR (2018) Stress responses of aquatic plants to silver nanoparticles. Environ Sci Technol 52:2558–2565

    Article  CAS  Google Scholar 

  • Yue Y, Behra R, Sigg L, Fernández Freire P, Pillai S, Schirmer K (2015) Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology 9:54–63

    Article  CAS  Google Scholar 

  • Zhang W, Yao Y, Li K, Huang Y, Chen Y (2011) Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159:3757–3762

    Article  CAS  Google Scholar 

  • Zhang W, Liu X, Bao S, Xiao B, Fang T (2016) Evaluation of nano-specific toxicity of zinc oxide, copper oxide, and silver nanoparticles through toxic ratio. J Nanopart Res 18:372

    Article  CAS  Google Scholar 

  • Zhang T, Lu D, Zeng L, Yin Y, He Y, Liu Q, Jiang G (2017) Role of secondary particle formation in the persistence of silver nanoparticles in humic acid containing water under light irradiation. Environ Sci Technol 51:14164–14172

    Article  CAS  Google Scholar 

  • Zhang W, Xiao B, Fang T (2018) Chemical transformation of silver nanoparticles in aquatic environments: mechanism, morphology and toxicity. Chemosphere 191:324–334

    Article  CAS  Google Scholar 

  • Zhang W, Huang J, Liang L, Yao L, Fang T (2019) Dual impact of dissolved organic matter on cytotoxicity of PVP-Ag NPs to Escherichia coli: mitigation and intensification. Chemosphere 214:754–763

    Article  CAS  Google Scholar 

  • Zhao C-M, Wang W-X (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892

    Article  CAS  Google Scholar 

  • Zhou W, Liu Y-L, Stallworth AM, Ye C, Lenhart JJ (2016) Effects of pH, electrolyte, humic acid, and light exposure on the long-term fate of silver nanoparticles. Environ Sci Technol 50:12214–12224

    Article  CAS  Google Scholar 

  • Zou X, Shi J, Zhang H (2015) Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: the roles of natural organic matter and light irradiation. J Hazard Mater 292:61–69

    Article  CAS  Google Scholar 

  • Zou X, Li P, Lou J, Fu X, Zhang H (2017) Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: effects of dissolved oxygen. Environ Pollut 230:674–682

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Joint Funds of the National Natural Science Foundation of China (No. U1804109), the Scientific Research and Service Platform Fund of Henan Province (No. 2016151), the scientific and technological innovation team of water ecological security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province (No. 17454), the Foundation of Henan educational committee (No. 19A330003), and the Foundation of Nanyang Normal University (No. 18023). We greatly thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weicheng Zhang or Lunguang Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Ke, S., Sun, C. et al. Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: a review. Environ Sci Pollut Res 26, 7390–7404 (2019). https://doi.org/10.1007/s11356-019-04150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04150-0

Keywords

Navigation