Skip to main content

Advertisement

Log in

Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The increasing use of silver nanoparticles (AgNPs) in consumer products raises concerns regarding the environmental exposure and impact of AgNPs on natural aquatic environments. Here, we investigated the effects of environmentally relevant AgNP concentrations on the natural plankton communities using in situ enclosures. Using twelve lake enclosures, we tested the hypotheses that AgNP concentration, dosing regimen, and capping agent (poly-vinyl pyrrolidone (PVP) vs. citrate) exhibit differential effects on plankton communities. Each of the following six treatments was replicated twice: control (no AgNPs added), low, medium, and high chronic PVP treatments (PVP-capped AgNPs added continuously, with target nominal concentrations of 4, 16, and 64 μg/L, respectively), citrate treatment (citrate-capped AgNPs added continuously, target nominal concentrations of 64 μg/L), and pulse treatment (64 μg/L PVP-AgNPs added as a single dose). Although Ag accumulated in the phytoplankton, no statistically significant treatment effect was found on phytoplankton community structure or biomass. In contrast, as AgNP exposure rate increased, zooplankton abundance generally increased while biomass and species richness declined. We also observed a shift in the size structure of zooplankton communities in the chronic AgNP treatments. In the pulse treatments, zooplankton abundance and biomass were reduced suggesting short periods of high AgNP concentrations affect zooplankton communities differently than chronic exposures. We found no evidence that capping agent affected AgNP toxicity on either community. Overall, our study demonstrates variable AgNP toxicity between trophic levels with stronger AgNP effects on zooplankton. Such effects on zooplankton are troubling and indicate that AgNP contamination could affect aquatic food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angel BM, Batley GE, Jarolimek CV, Rogers NJ (2013) The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93:359–365

    Article  CAS  Google Scholar 

  • APHA (1992) Standard methods for the examination of water and wastewater. Amer Pub Health Assoc Washington, DC

    Google Scholar 

  • Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnology 10:1–11

    Article  Google Scholar 

  • Baptista MS, Miller RJ, Halewood ER, Hanna SK, Almeida MR, Vasconcelos VM, Keller AA, Lenihan HS (2015) Impacts of silver nanoparticles on a natural estuarine plankton community. Enviro Sci Technol 49:12968–12974

    Article  CAS  Google Scholar 

  • Blakelock GC, Xenopoulos MA, Norman BM, Vincent JL, Frost PC (2016) Effects of silver nanoparticles on bacterioplankton in a boreal lake. Freshwater Biol 61: 2211–2220

  • Blaser SA, Scheringer M, MacLedo M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  • Blinova I, Niskanen J, Kajankari P, Kanarbik L, Käkinen A, Tenhu H, Penttinen O-P, Kahru A (2013) Toxicity of two types of silver nanoparticles crustaceans Daphnia magna and Thamnocephalus platyurus. Environ Sci Pollut Res 20:3456–3463

    Article  CAS  Google Scholar 

  • Bone AJ, Colman BP, Gondikas AP, Newton KM, Harrold KH, Cory RM, Unrine JM, Klaine SJ, Matson CW, Di Giulio RT (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation. Environ Sci Technol 46:6925–6933

    Article  CAS  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Bojeong K, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario PLOS one doi:10.1371/journal.pone.0057189

  • Colman BP, Espinasse B, Richardson CJ, Matson CW, Lowry GV, Hunt DE, Wiesner MR, Bernhardt ES (2014) Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol 48:5229–5236

    Article  CAS  Google Scholar 

  • Crumpton WG, Isenhart TM, Mitchell PD (1992) Nitrate and organic N analyses with second-derivative spectroscopy. Limnol Oceanogr 37:907–913

    Article  CAS  Google Scholar 

  • Culver BA, Boucherle MM, Bean DJ, Fletcher JW (1985) Biomass of freshwater crustacean zooplankton from length-weight regressions. Can J Fish Aquat Sci 42:1380–1396

    Article  Google Scholar 

  • Dale AL, Lowry GV, Casman EA (2015) Much ado about α: reframing the debate over appropriate fate descriptors in nanoparticle environmental risk modeling. Environ Sci Nano 2:27–32

    Article  CAS  Google Scholar 

  • Das P, Metcalfe CD, Xenopoulos MA (2014) Interactive effects of silver nanoparticles and phosphorus on phytoplankton growth in natural waters. Environ Sci Technol 48:4573–4580

    Article  CAS  Google Scholar 

  • Das P, Xenopoulos MA, Metcalfe CD (2013) Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Bull Environ Contam Toxicol 91:76–82

    Article  CAS  Google Scholar 

  • Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D (2012) Effect of silver nanoparticles on growth and eukaryotic green algae. Nano-micro letters 4:158–165

    Article  CAS  Google Scholar 

  • Downing JA, Peters RH (1980) The effects of body size and food concentration on the in situ filtering rate of Sida crystalline. Limnol Oceanogr 25:883–895

    Article  Google Scholar 

  • Dumont E, Johnson AC, Keller VDJ, Williams RJ (2015) Nano silver and nano zinc-oxide in surface waters – Exposure estimation for Europe at high spatial and temporal resolution. Environ Pollut 196:341–349

    Article  CAS  Google Scholar 

  • Fairchild GW (1980) Movement and microdistribution of Sida crystallina and other littoral microcrustacea. Ecology 62:1341–1352

    Article  Google Scholar 

  • Findlay DL, Vanni MJ, Paterson M, Mills KH, Kasian SEM, Findlay WJ, Salki AG (2005) Dynamics of a boreal lake ecosystem during a long-term manipulation of top predators. Ecosystems 8:603–618

    Article  CAS  Google Scholar 

  • Fischer JM, Frost TM, Ives AR (2001) Compensatory dynamics in zooplankton community responses to acidification: measurement and mechanisms. Ecol Appl 11:1060–1072

    Article  Google Scholar 

  • Fulton III RS (1988) Resistance to blue-green algal toxins by Bosmina longirostris. J Plankton Res 10:771–778

    Article  CAS  Google Scholar 

  • Furtado L, Hoque M, Mitrano D, Ranville J, Cheever B, Frost PC, Xenopoulos MA, Hintelmann H, Metcalfe C (2014) The persistence and transformation of silver nanoparticles in littoral lake mesocosms monitored using various analytical techniques. Environ Chem 11:419–430

    Article  CAS  Google Scholar 

  • Furtado LM, Norman BC, Xenopoulos MA, Frost PC, Metcalfe CD, Hintelmann H (2015) Environmental fate of silver nanoparticles in boreal lake ecosystems. Environ Sci Technol 49:8441–8450

    Article  CAS  Google Scholar 

  • Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo J-CJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43:3322–3328

    Article  CAS  Google Scholar 

  • Gonzalez A, Loreau M (2009) The causes and consequences of compensatory dynamics in ecological communities. Annu Rev Ecol Evol Syst 40:393–414

    Article  Google Scholar 

  • Gottschalk F, Scholz W, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Modell Softw 25:320–332

    Article  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP (2013) Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol 47:14315–14323

    Article  CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Tox Chem 27:1972–1978

    Article  CAS  Google Scholar 

  • Handy R, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  Google Scholar 

  • Hoheisel SM, Diamond S, Mount D (2012) Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales Promelas. Environ Tox Chem 31:2557–2563

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  Google Scholar 

  • Kennedy AJ, Hull MS, Bednar AJ, Goss JD, Gunter JC, Bouldin JL, Vikesland PJ, Stevens JA (2010) Fractionating nanosilver: importance for determining toxicity to aquatic text organisms. Environ Sci Technol 44:9571–9577

    Article  CAS  Google Scholar 

  • Kennedy AJ, Hull MS, Diamond S, Chappell M, Bednar AJ, Laird JG, Melby NL, Stevens JS (2015) Gaining a critical mass: A dose metric conversion case study using silver nanoparticles. Environ Sci Technol 49:12490–12499

    Article  CAS  Google Scholar 

  • Lawrence SG, Matley BF, Findlay WJ, Maelver MA, Delbaere IL (1987) Method for estimating dry weight of freshwater planktonic crustaceans from measures of length and shape. Can J Fish Aquat Sci 44:264–274

    Article  Google Scholar 

  • Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown Jr GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV (2012) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47:13440–13448

    Article  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  Google Scholar 

  • Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487:92–96

    Article  CAS  Google Scholar 

  • Malley DF, Lawrence SGL, Maciver MA, Findley WJ (1989) Range of variation in estimates of dry weight for planktonic crustacea and rotifera from temperate North American Lakes. Can Techn Rep Fish Aquat Sci #1666

  • Maynard DG, Kalra YP (1993) Nitrate and exchangeable ammonium nitrogen. In: Carter MR (ed) Soil Sampling and Methods of Analysis. Lewis Publishers, Florida, pp 28–32

    Google Scholar 

  • McCauley E (1984). The estimation of the abundance and biomass of zooplankton in samples. In: Downing JA, & Rigler FH (ed) A manual on methods for the assessment of secondary productivity in fresh waters. 2nd edn. Blackwell, Oxford, pp 228–265

  • McTeer J, Dean AP, White KN, Pittman JK (2014) Bioaccumulation of silver nanoparticles in Daphnia magna from a freshwater algal diet and the impact of phosphate availability. Nanotoxicology 8:305–316

    Article  CAS  Google Scholar 

  • Miao A-J, Luo Z, Chen C-S, Chin W-C, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLOS One 5:e15196

  • Miao A-J, Schwehr KA, Xu C, Zhang S-J, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Poll 157:3034–3041

    Article  CAS  Google Scholar 

  • Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins C, Ranville J (2012) Silver nanoparticle characterization using single partial ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4- ICP-MS). J Anal At Spectrom 27:1131–1142

    Article  CAS  Google Scholar 

  • Musee N (2011) Simulated environmental risk estimation of engineered nanomaterials: A case of cosmetics in Johannesburg city. Hum Exp Toxicol 30:1181–1195

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  • Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effect of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotox Environ Safe 78:80–85

    Article  CAS  Google Scholar 

  • Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF (2011) Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem 83:9361–9369

    Article  CAS  Google Scholar 

  • Paterson MJ, Podemski CL, Findlay WJ, Findlay DL, Salki AG (2010) The response of zooplankton in a whole-lake experiment on the effects of a cage aquaculture operation for rainbow trout (Oncorhynchus mykiss). Can J Fish Aquatic Sci 67:1852–1861

    Article  Google Scholar 

  • Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44:6532–6549

    Article  CAS  Google Scholar 

  • Pillai S, Behra R, Nestler H, Suter MJ-F, Sigg L, Schirmer K (2014) Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. PNAS 111:3490–3495

    Article  CAS  Google Scholar 

  • Pinel-Alloul B, André A, Legendre P, Cardille JA, Patalas K, Salki A (2013) Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes. Global Ecol Biogeogr 22:784–795

    Article  Google Scholar 

  • Prepas EE (1978) Sugar-frosted Daphnia: an improved fixation technique for Cladocera. Limnol Oceanogr 23:557–559

    Article  Google Scholar 

  • Rana S, Samanta S, Bhattacharya S, Al-Khaled K, Gosawami A, Chattopadhyay J (2015) The effect of nanoparticles on plankton dynamics: a mathematical model. Biosystems 127:28–41

    Article  CAS  Google Scholar 

  • Rosen RA (1981) Length-dry weight relationships of some freshwater zooplankton. J Freshwater Ecol 1:225–229

    Article  Google Scholar 

  • Sakamoto M, Chang KH, Hanazato T (2005) Differential sensitivity of a predacious cladoceran (Leptodora) and its prey (the cladoceran Bosmina) to the insecticide carbaryl: results of acute toxicity tests. Bull Environ Contam Toxicol 75:28–33

    Article  CAS  Google Scholar 

  • Sterner RW, Schulz KL (1998) Zooplankton nutrition: recent progress and a reality check. Aquatic Ecology 32:261–279

    Article  Google Scholar 

  • Stevenson LM, Dickon H, Klanjscek T, Keller AA, McCauley E, Nisbet RM (2013) Environmental feedbacks and engineered nanoparticles: mitigation of silver nanoparticle toxicity to Chlamydomonas reinhardtii by algal-produced organic compounds. PLOS ONE 8:e74456

  • Tejamaya M, Romer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017

    Article  CAS  Google Scholar 

  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006

    Article  CAS  Google Scholar 

  • Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW (2012) Biotic and abiotic interaction in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Environ Sci Technol 43:6015–6024

    Google Scholar 

  • Vinebrooke RD, Schindler DW, Findlay DL, Turner MA, Paterson M, Mills KH (2003) Trophic dependence of ecosystem resistance and species compensation in experimentally acidified Lake 302S (Canada). Ecosystems 6:101–113

    Article  Google Scholar 

  • Xenopoulos MA, Leavitt PR, Schindler DW (2009) Ecosystem regulation of boreal lake phytoplankton by ultraviolet radiation. Can J Fish Aquat Sci 66:2002–2010

    Article  CAS  Google Scholar 

  • Yan ND, Girard R, Heneberry JH, Keller WB, Gunn JM, Dillon PJ (2004) Recovery of copepod, but not cladoceran zooplankton from severe and chronic effects of multiple stressors. Ecol Lett 7:452–460

    Article  Google Scholar 

  • Yan ND, Strus R (1980) Crustacean zooplankton communities of acidic, metal-contaminated lakes near Sudbury, Ontario Can J Fish Aquat Sci 37:2282–2293

    Article  CAS  Google Scholar 

  • Zhao C-M, Wang W-X (2010) Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ Sci Technol 44:7699–7704

    Article  CAS  Google Scholar 

  • Zhao C-M, Wang W-X (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Tox Chem 30:885–892

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Canada’s Natural Sciences and Engineering Research Council Strategic Project grant awarded to Trent University, with additional support from Environment Canada, the IISD-Experimental lakes Area and the Provinces of Ontario and Manitoba. We thank Graham Blakelock, Lindsay Furtado, Jonathan Martin, and Nicole Novodvorský for their assistance in the field and laboratory. We thank Chris Metcalfe and Holger Hintelmann for all the insightful discussions throughout this project. In addition, we thank the scientists and staff at the Experimental Lakes Area for their support, guidance and knowledge throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marguerite A. Xenopoulos.

Ethics declarations

Conflict of interest

This research was funded by Canada’s Natural Sciences and Engineering Research Council Strategic Project grant awarded to Trent University, with additional support from Environment Canada, the IISD-Experimental lakes Area and the Provinces of Ontario and Manitoba. All authors declare that they have no conflict of interest. This article does not contain any studies with vertebrate animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, J.L., Paterson, M.J., Norman, B.C. et al. Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton. Ecotoxicology 26, 502–515 (2017). https://doi.org/10.1007/s10646-017-1781-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-017-1781-8

Keywords

Navigation