Skip to main content
Log in

Spatial variability and seasonal toxicity of dredged sediments from Guanabara Bay (Rio de Janeiro, Brazil): acute effects on earthworms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The toxicity of dredged sediments from Guanabara Bay (Rio de Janeiro, Brazil) was evaluated using acute bioassays with Eisenia andrei and metal determination. The sediments were collected in August 2014 (winter) and February 2015 (summer) and in five areas distributed along the Bay: Port of Rio de Janeiro, Port of Niterói, Meriti River mouth, Iguaçu River mouth, and the Environmental Protection Area (APA) of Guapimirim. The sediments were mixed with a ferralsol (a representative Brazilian tropical soil) in proportions varying between 0 (pure soil) and 30%. The acute bioassays with E. andrei followed a standard protocol (ISO 11268-2:2012). Total metal determination in the sediments was performed by ICP-OES. The medium lethal earthworm concentration (LC50) was estimated through PriProbit analysis. The sediments from the APA of Guapimirim, which is a control area at the Guanabara Bay, were the only ones whose total metal concentrations were in agreement with the limits established by Brazilian law for land disposal of dredged sediments. However, the sediments collected in the APA of Guapimirim were the most toxic ones among the study areas due to very high contents of salts in these materials. Winter sediments were generally more toxic compared to the summer ones due to the increase of metal concentrations and salt precipitation to bottom sediments during the winter. The exceptions were (i) the sediments from APA of Guapimirim, where the toxicity in the summer (LC50 = 3.99%) and winter (LC50 = 4.60%) were relatively similar to each other, since the toxicity is linked to salt in excess; and (ii) the Iguaçu River mouth, where the presence of mangrove areas might be associated with the filtering of pollution sources (winter LC50 = 12.67%; summer LC50 = 11.58%). In the Port of Rio de Janeiro, LC50 obtained in the winter (7.30%) was almost three times lower than that found in the summer (19.64%). The sediments from Meriti River mouth showed the highest total metal concentrations, were the most toxic sediments among the study areas (excluding the APA of Guapimirim), and its winter LC50 (6.64%) was almost twice lower than that obtained in the summer (12.55%). By following the same tendency, summer LC50 (17.52%) found for the sediment collected in the Port of Niterói was also higher than the value found in the winter (12.34%). Finally, the dredged sediments from Guanabara Bay were toxic to earthworms in mixtures with pure ferralsol and winter samples were generally more toxic than the summer ones, in agreement with the increase of metal and salt concentrations during the winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abreu IM, Cordeiro RC, Soares-Gomes A, Abessa DMS, Maranho LA, Santelli RE (2016) Ecological risk evaluation of sediment metals in a tropical euthrophic bay, Guanabara Bay, Southeast Atlantic. Mar Pollut Bull 109:435–445. https://doi.org/10.1016/j.marpolbul.2016.05.030

    Article  CAS  Google Scholar 

  • Alamino RCJ, Polivanov H, Campos TMPC, Silva VHG, Santos LV, Mendes JC (2007) Biodisponibilidade de cádmio em latossolo acrescido de lodo de esgoto. Anu Inst Geocienc 30(2):45–54

  • Baptista Neto JA, Crapez M, Vilela CG, Mcallister JJ (2005) Concentration and bioavailability of heavy metals in sediments from Niterói Harbour/S.E. Brazil. J Coast Res 21:811–817. https://doi.org/10.2112/012-NIS.1

    Article  Google Scholar 

  • Baptista-Neto JA, Gingele FX, Leipe T, Brehme I (2006) Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environ Geol 49:1051–1063. https://doi.org/10.1007/s00254-005-0149-1

    Article  CAS  Google Scholar 

  • Barrocas PR, Wasserman JC (1995) O mercúrio na Baía da Guanabara: uma revisão histórica. Geochim Bras 9(2):115–127

    CAS  Google Scholar 

  • Berge A, Vulliet E (2015) Development of a method for the analysis of hormones and pharmaceuticals in earthworms by quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 407:7995–8008. https://doi.org/10.1007/s00216-015-8972-z

    Article  CAS  Google Scholar 

  • Bianchi MO (2013) Ensaios Ecotoxicológicos como ferramenta para avaliação do impacto ambiental de resíduos de mineração sobre o solo. Dissertation, Rural Federal University of Rio de Janeiro

  • Carbonell G, Gómez JPN, Babín MM, Fernández C, Alonso E, Tarazona JV (2009) Sewage sludge applied to agricultural soil: ecotoxicological effects on representative soil organisms. Ecotoxicol Environ Saf 72:1309–1319. https://doi.org/10.1016/j.ecoenv.2009.01.007

    Article  CAS  Google Scholar 

  • Cesar RG, Egler S, Polivanov H, Castilhos ZC, Rodrigues AP (2011) Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais state, Brazil. Environ Earth Sci 64:211–222. https://doi.org/10.1007/s12665-010-0840-8

    Article  CAS  Google Scholar 

  • Cesar RG, Natal-Da-Luz T, Silva F, Bidone ED, Castilhos ZC, Polivanov H, Sousa JP (2015) Ecotoxicological assessment of a dredged sediment using bioassays with three species of soil invertebrates. Ecotoxicol 24:414–423. https://doi.org/10.1007/s10646-014-1390-8

    Article  CAS  Google Scholar 

  • Cesar RG, Natal-da-Luz T, Sousa JP, Bidone ED, Colonese JP, Castilhos ZC, Egler SG, Polivanov H (2014) Disposal of dredged sediments in tropical soils: ecotoxicological effects on earthworms. Environ Monit Assess 186:1487–1497. https://doi.org/10.1007/s10661-013-3468-9

    Article  CAS  Google Scholar 

  • Cesar RG, Rodrigues AP, Rocha BCRC, Campos TMP, Monte C, Dealtry S, Castilhos ZC, Machado W (2017) Ecotoxicological assessment of dredged sediments from Guanabara and Sepetiba bays (Rio de Janeiro State, Brazil) using bioassays with earthworms. In: Araujo C, Shinn C (eds) Ecotoxicology in Latin America. Nova Publishers, New York, pp 309–324

    Google Scholar 

  • Cesar RG, Silva MB, Colonese JP, Bidone ED, Egler S, Castilhos ZC, Polivanov H (2012) Influence of the properties of tropical soils in the toxicity and bioavailability of heavy metals in sewage sludge-amended lands. Environ Earth Sci 66:2281–2292. https://doi.org/10.1007/s12665-011-1449-2

    Article  CAS  Google Scholar 

  • Conselho Nacional de Meio Ambiente (CONAMA) (2009) Resolução 420. Available at: <http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=506>. Accessed November 2012

  • Conselho Nacional do Meio Ambiente (CONAMA) (2012) Resolução 454. Available at: <http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=693>. Accessed September 2018

  • Covelli S, Protopsalti I, Acquavita A, Sperle M, Bonardi M, Emili A (2012) Spatial variation, speciation and sedimentary records of mercury in the Guanabara Bay (Rio de Janeiro, Brazil). Cont Shelf Res 35:29–42

    Article  Google Scholar 

  • EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). 1997. Centro Nacional de Pesquisa de Solos. In: Manual de Métodos de Análises de Solo. Rio de Janeiro, RJ, p. 212

  • Farias CO, Hamacher C, Wagner AL, Campos RC, Godoy JM (2007) Trace metal contamination in mangrove sediments, Guanabara Bay, Rio de Janeiro, Brazil. J Braz Chem Soc 18(6):1194–1206. https://doi.org/10.1590/S0103-50532007000600014

    Article  CAS  Google Scholar 

  • Fiori CS, Rodrigues APC, Santelli RE, Cordeiro RC, Carvalheira RG, Araújo PC, Castilhos ZC, Bidone ED (2013) Ecological risk index for aquatic pollution control: a case study of coastal water bodies from the Rio de Janeiro state, southeastern Brazil. Geochim Bras 27:24–36

    Article  CAS  Google Scholar 

  • Fistarol G, Coutinho FH, Moreira APB, Cánovas A, Paulajr SEM, Coutinho R, Moura RL, Valentin JL, Tenenbaum DR, Paranhos R, Valle RAB, Vicente ACP, Pereira RC, Kruger R, Rezende CE, Thompson CC, Salomon PS, Thompson FL (2015) Environmental and sanitary conditions of Guanabara Bay, Rio de Janeiro. Front Microbiol 6:1232–1242. https://doi.org/10.3389/fmicb.2015.01232

    Article  Google Scholar 

  • Garcia M (2004) Effects of pesticides on soil fauna: Development of ecotoxicology test methods for tropical regions. In: Vlek PLG et al (eds) Ecology and Development Series, vol 19. Cuvillier Verlag, Gottingen, p 282

    Google Scholar 

  • Godoy JM, Moreira I, Bragan MJ, Wanderley C, Mendes LB (1998) A study of Guanabara Bay sedimentation rates. J Radioanal Nucl Ch 227:157–160. https://doi.org/10.1007/BF02386450

    Article  CAS  Google Scholar 

  • Guzyte G, Sujetoviene G, Zaltauskaite J (2011). Effects of salinity on earthworm (Eisenia fetida). In: The 8th International Conference of Environmental Engineering, Vilnius, Lithuania. p. 111–114

  • Ho KT, Burgess RM, Pelletier MC, Serbst JR, Ryba SA, Cantwell MG, Kuhn A, Raczelowski P (2002) An overview of toxicant identification in sediments and dredged materials. Mar Pollut Bull 44:286–293. https://doi.org/10.1016/S0025-326X(01)00251-X

    Article  CAS  Google Scholar 

  • ISO (International Organization for Standardization) 2012. Soil quality — Effects of pollutants on earthworms (Eisenia fetida) — Part 1: Determination of acute toxicity to Eisenia fetida/andrei. ISO 11268–2. Geneve, Switzerland

  • Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 10(4):715–740

    Google Scholar 

  • Kjerfve B, Ribeiro CHA, Dias GTM, Filippo AM, Quaresma VS (1997) Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Cont Shelf Res 17:1609–1643. https://doi.org/10.1016/S0278-4343(97)00028-9

    Article  Google Scholar 

  • Machado W, Moscatelli M, Rezende LG, Lacerda LD (2002) Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in Southeast Brazil. Environ Pollut 120:455–461. https://doi.org/10.1016/S0269-7491(02)00108-2

    Article  CAS  Google Scholar 

  • Machado W, Carvalho MF, Santelli RE, Maddock JE (2004) Reactive sulfides relationship with metals in sediments from an eutrophicated estuary in Southeast Brazil. Mar Pollut Bull 49(1–2):89–92. https://doi.org/10.1016/j.marpolbul.2004.01.012

    Article  CAS  Google Scholar 

  • Machado W, Rodrigues APC, Bidone ED, Sella SM, Santelli RE (2011) Evaluation of cu potential bioavailability changes upon coastal sediment resuspension: an example on how to improve the assessment of sediment dredging environmental risks. Environ Sci Poll Research International 18:1033–1036. https://doi.org/10.1007/s11356-011-0517-1

    Article  CAS  Google Scholar 

  • Machado W, Villar L, Monteiro F, Viana LCA, Santelli RE (2010) Relation of acid-volatile sulfides (AVS) with metals in sediments from eutrophicated estuaries: is it limited by metal-to-AVS ratios? J. Soils Sediments 10:1606–1610. https://doi.org/10.1007/s11368-010-0297-0

    Article  CAS  Google Scholar 

  • Maranho LA, Abreu IM, Santelli RE, Cordeiro RC, Soares-Gomes A, Moreira LB, Morais RD, Abessa DMS (2010) Acute and chronic toxicity of sediment samples from Guanabara Bay (RJ) during the rainy period. Braz J Oceanogr 58:77–85. https://doi.org/10.1590/S1679-87592010000700010

    Article  Google Scholar 

  • Monte CN, Rodrigues APC, Cordeiro RC, Freire AS, Santelli RE, Machado W (2015) Changes in cd and Zn bioavailability upon an experimental resuspension of highly contaminated coastal sediments from a tropical estuary. Sustain Water Resour Manag 1:332–335. https://doi.org/10.1007/s40899-015-0034-3

    Article  Google Scholar 

  • Monteiro FF, Cordeiro RC, Santelli RE, Machado W, Evangelista H, Villar LS, Viana LCA, Bidone ED (2011) Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality. Environ Earth Sci 65(6):1661–1669. https://doi.org/10.1007/s12665-011-1143-4

    Article  Google Scholar 

  • Moser H, Römbke J (2009) Ecotoxicological characterization of waste – results and experiences on an international ring test. Springer Publisher, Dessau

    Book  Google Scholar 

  • Müller G (1979) Schwermetalle in den Sedimenten des Rheins-Veränderungen seit. Umschau 24:778–783

    Google Scholar 

  • Munns WR, Berry WJ, Dewitt WT (2002) Toxicity testing, risk assessment, and options for dredged material management. Mar Pollut Bull 44:294–302. https://doi.org/10.1016/S0025-326X(01)00250-8

    Article  CAS  Google Scholar 

  • Natal-da-Luz T, Römbke J, Sousa JP (2008) Avoidance tests in site-specific risk assessment—influence of soil properties on the avoidance response of collembola and earthworms. Environ Toxicol Chem 27(5):1112–1117. https://doi.org/10.1897/07-386.1

    Article  CAS  Google Scholar 

  • Natal-da-Luz T, Tidona S, Jesus B, Morais PV, Sousa JP (2009) The use of sewage sludge as soil amendment: The need for an ecotoxicological evaluation. J Soils Sediments 9:246–260

    Article  CAS  Google Scholar 

  • Owojori OJ, Reinecke AJ, Rozanov AB (2009) The combined stress effects of salinity and copper on the earthworm Eisenia fetida. Appl Soil Ecol 41:277–285. https://doi.org/10.1016/j.apsoil.2008.11.006

    Article  Google Scholar 

  • Paranhos R, Mayr LM (1993) Seasonal patterns of temperature and salinity in Guanabara Bay, Brazil. Fresenius Environ Bull 2:647–652

    CAS  Google Scholar 

  • Paranhos R, Pereira AP, Mayr LM (1998) Diel variation of water quality in a pollution gradient in a tropical polluted bay. Environ Monit Assess 50:131–141. https://doi.org/10.1023/A:1005855914215

    Article  CAS  Google Scholar 

  • Peña-Icart M, Mendiguchia C, Villanueva-Tagle ME, Pomares-Alfonso MS, Moreno C (2014) Revisiting methods for the determination of bioavailable metals in coastal sediments. Mar Pollut Bull 89:67–74

    Article  Google Scholar 

  • Pinto APF (1995) Geoquímica do mercúrio em perfis sedimentares de manguezais da Baía de Guanabara – Rio de Janeiro – Brasil. Dissertation, Departament of Geochemistry, Federal Flumininse University

  • Rego VS, Pfeiffer WC, Barcellos CC, Rezende CE, Malm O, Souza CMM (1993) Heavy metal transport in the Acari-São João de Meriti river system, Brazil. Environ Technol 14:167–174. https://doi.org/10.1080/09593339309385276

    Article  CAS  Google Scholar 

  • Rodrigues APC, Maciel PO, Silva LCCP, Almosny NRP, Andreata JV, Bidone ED, Castilhos ZC (2011) Relationship between mercury concentrations in the blood with that in the muscle of four estuarine tropical fish species, Rio de Janeiro state, Brazil. Bull Environ Contam Toxicol 86:357–362. https://doi.org/10.1007/s00128-011-0228-9

    Article  CAS  Google Scholar 

  • Sakuma M (1998) Probit analysis of preference data. Appl Entomol Zool 33:339–347. https://doi.org/10.1303/aez.33.339

    Article  Google Scholar 

  • Selivanovskaya SY, Latypova VZ (2003) The use of bioassays for evaluating the toxicity of sewage sludge and sewage sludge-amended soil. J Soils Sediments 3(2):85–92. https://doi.org/10.1007/BF02991073

    Article  CAS  Google Scholar 

  • Sivakumar S (2015) Effects of metals on earthworm life cycles: a review. Environ Monit Assess 187:530. https://doi.org/10.1007/s10661-015-4742-9

    Article  CAS  Google Scholar 

  • Silva TF, Azevedo DA, Neto FRA (2007) Distribution of polycyclic aromatic hydrocarbons in surface sediments and waters from Guanabara Bay, Rio de Janeiro, Brazil. J Braz Chem Soc 18(3):628–637. https://doi.org/10.1590/S0103-50532007000300021

    Article  Google Scholar 

  • Silveira RP, Rodrigues APC, Santelli RE, Cordeiro RC, Bidone ED (2011) Mass balance in the monitoring of pollutants in tidal rivers of the Guanabara Bay, Rio de Janeiro, Brazil. Environ Monit Assess 181:1–9. https://doi.org/10.1007/s10661-010-1821-9

    Article  CAS  Google Scholar 

  • Straalen NM, Donker MH, Vijver MG, Gestel CAM (2005) Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Environ Pollut 136:409–417. https://doi.org/10.1016/j.envpol.2005.01.019

    Article  CAS  Google Scholar 

  • Szafer P, Szafer K, Glasby GP, Pempkowiak J, Kaliszan R (1996) Heavy-metal pollution in surficial sediments from the Southern Baltic sea off Poland. J Env Sci Health. Part A: Env Sci Eng and Toxicol 31(10):2723–2754. https://doi.org/10.1080/10934529609376520

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192

    Article  CAS  Google Scholar 

  • Usmani Z, Kumar V (2015) Role of earthworms against metal contamination: a review. J Biol Environ Sci 6(1):414–427

    Google Scholar 

  • Utete B, Nhiwatiwa T, Barson M, Mabika N (2013) Metal correlations and mobility in sediment and water from the Gwebi River in the upper Manyame catchment, Zimbabwe. Int J Water Sci 2(4):1–8. https://doi.org/10.5772/57199

    Article  Google Scholar 

  • Vacha R, Cechmankova J, Skala J, Hoffman J, Cermak P, Sanka M, Vachova T (2011) Use of dredged sediments on agricultural soils from viewpoint of potentially toxic substances. Plant Soil Environ 57(8):388–395

    Article  CAS  Google Scholar 

  • Vezzone M, Cesar RG, Polivanov H, Serrano A, Teixeira M, Eckstein V, Bianchi MO, Castilhos ZC, Campos TM (2017) Ecotoxicological evaluation of dredged sediments from Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil) using bioassays with earthworms and springtails. Environ Earth Sci, submitted

  • Wasserman JC, Freitas-Pinto AAP, Amouroux D (2000) Mercury concentrations in sediment profiles of a degraded tropical coastal environment. Environ Technol 21:297–305. https://doi.org/10.1080/09593332108618117

    Article  CAS  Google Scholar 

Download references

Funding

We would like to thank the CNPq (National Brazilian Council for Scientific and Technological Development) and CAPES (Coordination for the Improvement of Higher Level-or Education-Personnel) Institutions for providing grants for Christiane Monte, Ana Paula Rodrigues, Danielle Siqueira, Aline Serrano e Matheus Teixeira. This study was supported by CNPq (process number 481898/2012-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Monte.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monte, C., Cesar, R., Rodrigues, A.P. et al. Spatial variability and seasonal toxicity of dredged sediments from Guanabara Bay (Rio de Janeiro, Brazil): acute effects on earthworms. Environ Sci Pollut Res 25, 34496–34509 (2018). https://doi.org/10.1007/s11356-018-3338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3338-7

Keywords

Navigation