Skip to main content

Advertisement

Log in

Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A sediment core from Guanabara Bay (Brazil) was analyzed for 210Pb dating, grain size, total organic carbon (TOC) and total nitrogen, carbon stable isotope ratio (δ13C), nitrogen stable isotope ratio (δ15N) and the metals Fe, Mn, Ni, Co, Cu, Pb, V and Zn, to assess the influence of land use changes on the aquatic system in a region for which large industrial and urban development is expected in the next few decades. To obtain baseline data for improving the monitoring of the expected increase in anthropogenic impacts from surrounding drainage basins, a multivariate analysis of data from different sediment layers was carried out to evaluate the dated sediment record. The geochemical data suggested three different sedimentary phases along the last 200 years. Before the 1880s, the highest clay and TOC contents were observed, where the C/N ratios and the δ13C values suggested a mixture of algal and terrestrial organic matter and the lowest concentrations of Co, Cu, Pb, V and Zn, for which background levels were estimated (4.6, 2.7, 14.9, 24.3 and 70.2 mg kg−1, respectively). From the 1880s to the 1950s, the metal concentrations and sand particles increased, but no change in organic matter quality was observed, reflecting a period of land use change, still without significant sewage input. After the 1950s, the sedimentation rate increased from 0.42 to 0.77 cm year−1 and increasing urban sewage input was evidenced by lower C/N ratios, higher δ15N, decrease of Fe and Mn concentrations and increased fluxes of metals and TOC, which showed a good relationship with population growth data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altabet MA, Francois R, Murray DW, Prell WL (1995) Climate-related in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373:506–509

    Article  Google Scholar 

  • Alvarez-Iglesias P, Rubio B, Vilas F (2003) Pollution in intertidal sediments of San Simon Bay (inner Ria de Vigo, NW of Spain). Total heavy metal concentration and speciation. Mar Pollut Bull 46:491–521

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8

    Article  Google Scholar 

  • Arnason JG, Fletcher BA (2003) A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA. Environ Pollut 123:383–391

    Article  Google Scholar 

  • Baptista-Neto JA, Smith BJ, Mcallister JJ (1999) Sedimentological evidence of human impact on a nearshore environment: Jurujuba Sound, Rio de Janeiro State, Brazil. Appl Geogr 19:153–177

    Article  Google Scholar 

  • Baptista-Neto JA, Smith BJ, Mcallister JJ (2000) Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environ Pollut 109:1–9

    Article  Google Scholar 

  • Baptista-Neto JA, Gingele FX, Leipe T, Brehme I (2006) Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environ Geol 49:1051–1063

    Article  Google Scholar 

  • Bellucci LG, Frignani M, Cochran JK, Albertazzi S, Zaggia L, Cecconi G, Hopkins H (2007) 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon e links to flooding frequency and climate change. J Environ Radioact 97:85–102

    Article  Google Scholar 

  • Borges AC, Sanders CJ, Santos HLR, Araripe DR, Machado W, Patchineelam SR (2009) Eutrophication history of Guanabara Bay (SE Brazil) recorded by phosphorus flux to sediments from a degraded mangrove area. Mar Pollut Bull 58:1750–1754

    Article  Google Scholar 

  • Bratton JF, Colman SM, Seal RR (2003) Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: human impacts in context. Geochim Cosmochim Acta 67:3385–3402

    Article  Google Scholar 

  • Carreira RS, Wagener ALR, Readman JW, Fileman TW, Macko SA, Veiga A (2002) Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach. Mar Chem 79:207–227

    Article  Google Scholar 

  • Castro P, Valiela I, Freitas H (2007) The use of sedimentary %C, %N, δ15N, and Pb concentrations to assess historical changes in anthropogenic influence on Portuguese estuaries. Environ Pollut 147:706–712

    Article  Google Scholar 

  • Costanzo SD, O’Donohue MJ, Dennison WC, Loneragan NR, Thomas M (2001) A new approach for detecting and mapping sewage impacts. Mar Pollut Bull 42:149–156

    Article  Google Scholar 

  • Cundy AB, Croudace IW, Cearreta A, Irabien MJ (2003) Reconstructing historical trends in metal input in heavily-disturbed, contaminated estuaries: studies from Bilbao, Southampton Water and Sicily. Appl Geochem 18:311–325

    Article  Google Scholar 

  • Di Gregorio DE, Fernandez Niello JO, Huck H, Somacal H, Curutchet G (2007) Pb-210 dating of sediments in a heavily contaminated drainage channel to the La Plata estuary in Buenos Aires, Argentina. Appl Radiat Isotopes 65:126–130

    Article  Google Scholar 

  • Díaz-Asencio M, Alonso-Hernández CM, Bolanos-Álvarez Y, Gómez-Batista M, Pinto V, Morabito R, Hernández-Albernas JI, Eriksson M, Sanchez-Cabeza JA (2009) One century sedimentary record of Hg and Pb pollution in the Sagua estuary (Cuba) derived from 210Pb and 137Cs chronology. Mar Pollut Bull 59:108–115

    Article  Google Scholar 

  • Godoy JM, Moreira I, Braganca MJ, Wanderley C, Mendes LB (1998) A study of Guanabara Bay sedimentation rates. J Radioanal Nucl Chem 227:157–160

    Article  Google Scholar 

  • Gomes FC, Godoy JM, Godoy MLDP, Carvalho ZL, Lopes RT, Sanchez-Cabeza JA, Lacerda LD, Wasserman JC (2009) Metal concentrations, fluxes, inventories and chronologies in sediments from Sepetiba and Ribeira Bays: a comparative study. Mar Pollut Bull 59:123–133

    Article  Google Scholar 

  • Herczeg AL, Smith AK, Dighton JC (2001) A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia: C:N, δ15N and δ13C in sediments. Appl Geochem 16:73–84

    Article  Google Scholar 

  • Hornberger MI, Luoma SN, Genn AV, Fuller C, Anima R (1999) Historical trends of metals in the sediments of San Francisco Bay, California. Mar Chem 64:39–55

    Article  Google Scholar 

  • Hyodo F, Tsugeki N, Azuma J, Urabe J, Nakanishi M, Wada E (2008) Changes in stable isotopes, lignin-derived phenols, and fossil pigments in sediments of Lake Biwa, Japan: Implications for anthropogenic effects over the last 100 years. Sci Total Environ 403:139–147

    Article  Google Scholar 

  • IBGE (2000) Estatísticas populacionais, sociais, políticas e culturais. http://www.ibge.gov.br/seculoxx/default.shtm. Accessed 10 July 2009

  • Invers O, Kraemer GP, Pérez M, Romero J (2004) Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. J Exp Mar Biol Ecol 303:97–114

    Article  Google Scholar 

  • Justo J, Evangelista H, Paschoa AS (2006) Direct determination of Ra-226 in NORM/TENORM matrices by gamma-spectrometry. J Radioanal Nucl Chem 269:733–737

    Article  Google Scholar 

  • Kalas FA, Carreira RS, Macko SA, Wagener ALR (2009) Molecular and isotopic characterization of the particulate organic matter from an eutrophic coastal bay in SE Brazil. Cont Shelf Res 29:2293–2302

    Article  Google Scholar 

  • Kehrig HA, Pinto FN, Moreira I, Malm O (2003) Heavy metals and methylmercury in a tropical coastal estuary and a mangrove in Brazil. Org Geochem 34:661–669

    Article  Google Scholar 

  • Kjerfve B, Ribeiro CHA, Dias GTM, Filippo AM, Quaresma VS (1997) Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Cont Shelf Res 17:1609–1643

    Article  Google Scholar 

  • Kostaschuk R, Chen Z, Saito Y, Wang Z (2008) Sedimentation rates and heavy metals in a macrotidal salt marsh: Bay of Fundy, Canada. Environ Geol 55:1291–1298

    Article  Google Scholar 

  • Laing GD, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    Article  Google Scholar 

  • Lobo I, Mozeto AA, Aravena R (2001) Paleohydrological investigation of Infernão Lake, Moji-Guaçu River watershed, São Paulo, Brazil. J Paleolimnol 26:119–129

    Article  Google Scholar 

  • Machado W, Moscatelli M, Rezende LG, Lacerda LD (2002) Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil. Environ Pollut 120:455–461

    Article  Google Scholar 

  • Machado W, Santelli RE, Loureiro DD, Oliveira EP, Borges AC, Ma VK, Lacerda LD (2008) Mercury accumulation in sediments along an eutrophication gradient in Guanabara Bay, southeast Brazil. J Brazil Chem Soc 19:569–575

    Article  Google Scholar 

  • Mayer B, Boyer E, Goodale C, Jaworski NA, Breemen NV, Howarth R, Seitzinger S, Billen G, Lajtha K, Nadelhoffer K, Dam DV, Hetling LJ, Nosal M, Paustian K (2002) Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: isotopic constraints. Biogeochemistry 57(58):171–197

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxis of paleoceanographic, paleolimnologic, paleoclimatic processes. Org Geochem 27:213–250

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  • Molisani MM, Marins RV, Machado W, Paraquetti HHM, Bidone ED, Lacerda LD (2004) Environmental changes in Sepetiba Bay, SE Brazil. Reg Environ Change 4:17–27

    Article  Google Scholar 

  • Perin G, Fabris R, Manente S, Rebello AW, Hamacher C, Scotto S (1997) A five-year study on the heavy-metal pollution of Guanabara Bay sediments (Rio de Janeiro, Brazil) and evaluation of the metal bioavailability by averages of geochemical speciation. Water Res 31:3017–3028

    Article  Google Scholar 

  • Pfitzner J, Brunskill G, Zagorskis I (2004) 137Cs and excess 210Pb deposition patterns in estuarine and marine sediment in the central region of the Great Barrier Reef Lagoon, north-eastern Australia. J Environ Radioact 76:81–102

    Article  Google Scholar 

  • Ravichandran M, Baskaran M, Santschi I, Bianchig TS (1995) History of trace metal pollution in Sabine-Neches Estuary, Beaumont, Texas. Environ Sci Technol 29:1495–1503

    Article  Google Scholar 

  • Rebello AL, Haekel W, Moreira I, Santelli RJ, Schroeder F (1986) The fate of heavy metals in an estuarine tropical system. Mar Chem 18:215–225

    Article  Google Scholar 

  • Ruiz-Fernández AC, Hillaire-Marcel C (2009) 210Pb-derived ages for the reconstruction of terrestrial contaminant history into the Mexican Pacific coast: potential and limitations. Mar Pollut Bull 59:134–145

    Article  Google Scholar 

  • Sabadini-Santos E, Knoppers BA, Oliveira EP, Leipe T, Santelli RE (2009) Regional geochemical baselines for sedimentary metals of the tropical São Francisco estuary, NE-Brazil. Mar Pollut Bull 58:601–606

    Article  Google Scholar 

  • Sanders CJ, Santos IR, Silva-Filho EV, Patchineelam SR (2006) Mercury flux to estuarine sediments, derived from Pb-210 and Cs-137 geochronologies (Guaratuba Bay, Brazil). Mar Pollut Bull 52:1085–1089

    Article  Google Scholar 

  • Smith JN (2001) Why should we believe 210Pb sediment geochronologies? J Environ Radioact 55:121–123

    Article  Google Scholar 

  • Teasdale PA, Collins PEF, Firth CR, Cundy AB (2011) Recent estuarine sedimentation rates from shallow inter-tidal environments in western Scotland: implications for future sea-level trends and coastal wetland development Quaternary. Sci Rev 30:109–129

    Article  Google Scholar 

  • US Environmental Protection Agency 3051 (1995) Test methods for evaluating solid waste, vol IA, Laboratory Manual Physical/Chemical Methods, SW 846, 3rd edn. US Government Printing Office, Washington, DC

  • Wang F, Liu C, Wu M, Yu Y, Wu F, Lü S, Wei Z, Xu G (2009) Stable isotopes in sedimentary organic matter from Lake Dianchi and their indication of eutrophication history. Water Air Soil Pollut 199:159–170

    Article  Google Scholar 

  • Wilken RD, Moreira I, Rebello A (1986) 210Pb and 137Cs fluxes in a sediment core from Guanabara Bay, Brazil. Sci Total Environ 58:195–198

    Article  Google Scholar 

  • Yao SC, Li SJ, Zhang HC (2008) 210Pb and 137Cs dating of sediments from Zigetang Lake, Tibetan Plateau. J Radioanal Nucl Ch 278:55–58

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Petrobrás SA. The authors are thankful for the research grants received from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio F. Monteiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, F.F., Cordeiro, R.C., Santelli, R.E. et al. Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality. Environ Earth Sci 65, 1661–1669 (2012). https://doi.org/10.1007/s12665-011-1143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1143-4

Keywords

Navigation