Skip to main content
Log in

Arsenate removal from aqueous solution by siderite synthesized under high temperature and high pressure

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In present study, a novel method was developed to synthesize siderite under high temperature and high pressure (SID-HTP). SID-HTP was characterized by N2 adsorption-desorption isotherms (BET), XRD, SEM, and FTIR and utilized to remove arsenic(V) (As(V)) from aqueous solution. Results showed that, under oxic condition, pH had ignorable effect on As(V) adsorption. However, adsorption capacity increased with increasing pH from 2 to 7 and remained relatively constant at higher pH until 10 under anoxic condition. Higher adsorption was obtained in the presence of oxygen, showing oxygen-enhanced As(V) adsorption on SID-HTP. In both cases, adsorption equilibrium was achieved within 12 h and adsorption process was better described by pseudo-second-order kinetic model. The equilibrium data fitted well with Langmuir isotherm model for As(V) adsorption. The maximum adsorption capacity increased with increasing temperature, which was up to 42 mg g−1 at 55 °C in the presence of oxygen. Thermodynamic study revealed that the adsorption was a spontaneous and endothermic process. The mechanism of oxygen-enhanced adsorption was mainly ascribed to the –OH on the surface of FeOOH (goethite and lepidocrocite) in the SID-HTP. It suggested that SID-HTP would be a potentially attractive adsorbent for As(V) removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SM, Bhuyian MH, Imam MB, Khan AA, Sracek O (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200

    Article  CAS  Google Scholar 

  • Altundoğan HS, Altundoğan S, Tümen F, Bildik M (2000) Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manag 20:761–767

    Article  Google Scholar 

  • Amstaetter K, Borch T, Larese-Casanova P, Kappler A (2010) Redox transformation of arsenic by Fe (II)-activated goethite (α-FeOOH). Environ Sci Technol 44:102–108

    Article  CAS  Google Scholar 

  • Banerjee K, Amy GL, Prevost M, Nour S, Jekel M, Gallagher PM, Blumenschein CD (2008) Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Res 42:3371–3378

    Article  CAS  Google Scholar 

  • Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 35:2621–2626

    Article  CAS  Google Scholar 

  • Bruce AM, Mathew LH, Christopher A, Jory AY (2002) Arsenic(iii) and arsenic(v) reactions with zerovalent iron corrosion products. Environ Sci Technol 36:5455–5461

    Article  Google Scholar 

  • Chammui Y, Sooksamiti P, Naksata W, Thiansem S, Arqueropanyo O (2014) Removal of arsenic from aqueous solution by adsorption on Leonardite. Chem Eng J 240:202–210

    Article  CAS  Google Scholar 

  • Choong TSY, Chuah TG, Robiah Y, Gregory Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    Article  CAS  Google Scholar 

  • Cortés-Arriagada D, Toro-Labbé A (2016) Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants. Appl Surf Sci 386:84–95

    Article  Google Scholar 

  • Dou XM, Li Y, Mohan D, Pittman CU Jr, Hu M (2016) A property-performance correlation and mass transfer study of As(V) adsorption on three mesoporous aluminas. RSC Adv 6:80630–80639

    Article  CAS  Google Scholar 

  • Escudero C, Fiol N, Villaescusa I, Bollinger JC (2009) Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. J Hazard Mater 164:533–541

    Article  CAS  Google Scholar 

  • Giménez J, Padlo JD, Martínez M, Rovira M, Valderrama C (2010) Reactive transport of arsenic(III) and arsenic(V) on natural hematite: experimental and modeling. J Colloid Interf Sci 348:293–297

    Article  Google Scholar 

  • Giral M, Zagury GJ, Deschênes L, Blouin JP (2010) Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils. Environ Pollut 158:1890–1898

    Article  CAS  Google Scholar 

  • Goldberg S, Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J.Colloid Interf. Sci 234:204–216

    Article  CAS  Google Scholar 

  • Gotić M, Musić S, Mössbauer (2007) FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions[J]. J Mol Struct 834:445–453

    Google Scholar 

  • Groen JC, Peffer LAA, Pérez-RamiRez J (2003) Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Micropor Mesopor Mat 60:1–17

    Article  CAS  Google Scholar 

  • Gunduz O, Simsek C, Hasozbek A (2010) Arsenic pollution in the groundwater of Simav plain, Turkey: its impact on water quality and human health. Water Air Soil Pollut 205:43–62

    Article  CAS  Google Scholar 

  • Guo HM, Li Y, Zhao K (2010) Arsenate removal from aqueous solution using synthetic siderite. JHazardMater 176:174–180

    CAS  Google Scholar 

  • Guo HM, Ren Y, Liu Q, Zhao K, Li Y (2013) Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: mechanism and application. Environ Sci Technol 47:1009–1016

    Article  CAS  Google Scholar 

  • Guo HM, Stüben D, Berner Z (2007) Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. J Colloid Interf Sci 315:47–53

    Article  CAS  Google Scholar 

  • Hamayun M, Mahmood T, Naeem A, Muska M, Din SU, Waseem M (2014) Equilibrium and kinetics studies of arsenate adsorption by FePO4. Chemosphere 99:207–215

    Article  CAS  Google Scholar 

  • Jia YF, Xu LY, Wang X, Demopoulos GP (2007) Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim Cosmochim Ac 71:1643–1654

    Article  CAS  Google Scholar 

  • Jönsson J, Sherman DM (2008) Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite: implications for arsenic release in anoxic groundwaters[J]. Chem Geol 255:173–181

    Article  Google Scholar 

  • Li ZJ, Deng SB, Yu G, Huang J, Lim VC (2010) As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: behavior and mechanism. Chem Eng J 16:106–113

    Article  Google Scholar 

  • Liang YJ, Min XB, Chai LY, Wang M, Liyang WJ, Pan QL, Okido M (2017) Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere 168:1142–1151

    Article  CAS  Google Scholar 

  • Ma J, Guo HM, Lei M, Zhou XY, Li FL, Yu T, Wei RF, Zhang HZ, Zhang X, Wu Y (2015) Arsenic adsorption and its fractions on aquifer sediment: effect of pH, arsenic species, and iron/manganese minerals. Water Air Soil Pollut 226:260

    Article  Google Scholar 

  • Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2011) Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination 281:93–99

    Article  CAS  Google Scholar 

  • Marino T, Figoli A (2015) Arsenic removal by liquid membranes. Membranes 5:150–167

    Article  CAS  Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere-a review. Sci of the Total Environ 249:297–312

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gómez-Serrano V, Gong H (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J.Colloid Interf. Sci 310:57–73

    Article  CAS  Google Scholar 

  • Mohapatra M, Sahoo SK, Anand S (2006) Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples. J Colloid Interf Sci 298:6

    Article  CAS  Google Scholar 

  • Müller K, Ciminelli VST, Dantas MSS, Willscher S (2010) A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res 44:5660–5672

    Article  Google Scholar 

  • Myneni SCB, Traina SJ, Waychunas GA, Logan TJ (1998) Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochim.Cosmochim.Ac 62:3285–3300

    Article  CAS  Google Scholar 

  • Nollet H, Roels M, Lutgen P, Van Der Meeren P, Verstraete W (2003) Removal of PCBs from wastewater using fly ash. Chemosphere 53:655–665

    Article  CAS  Google Scholar 

  • Paige CR, Snodgrass WJ, Nicholson RV, Scharer JM (1997) An arsenate effect on ferrihydrite dissolution kinetics under acidic oxic conditions. Water Res 31:2370–2382

    Article  CAS  Google Scholar 

  • Panday KK, Prasad G, Singh VN (1985) Copper removal from aqueous solutions by fly ash. Water Res 19:869–873

    Article  CAS  Google Scholar 

  • Peng B, Song TT, Wang T, Chai LY, Yang WC, Li XR, Li CF, Wang HY (2016) Facile synthesis of Fe3O4@Cu(OH)2 composites and their arsenic adsorption application. Chem Eng J 299:15–22

    Article  CAS  Google Scholar 

  • Pillewan P, Mukherjee S, Roychowdhury T, Das S, Bansiwal A, Rayalu S (2011) Removal of As(III) and As(V) from water by copper oxide incorporated mesoporous alumina. J.Hazard.Mater 186:367–375

    Article  CAS  Google Scholar 

  • Repo E, Mäkinen M, Rengaraj S, Natarajan G, Bhatnagar A, Sillanpaa M (2012) Lepidocrocite and its heat-treated forms as effective arsenic adsorbents in aqueous medium. Chem Eng J 180:159–169

  • Salman JM, Njoku VO, Hameed BH (2011) Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chem Eng J 174:33–40

    Article  CAS  Google Scholar 

  • Sharp WE (1960) The cell constants of artificial siderite. Am Mineral 45:241–243

    CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Song J, Jia SY, Yu B, Wu SH, Han X (2015) Formation of iron (hydr) oxides during the abiotic oxidation of Fe (II) in the presence of arsenate. J Hazard Mater 294:70–79

    Article  CAS  Google Scholar 

  • Sun XH, Donor HE (1998) Adsorption and oxidation of arsenite on goethite. Soil Sci 163:278–287

    Article  CAS  Google Scholar 

  • Tang WS, Su Y, Li Q, Gao SA, Shang JK (2013) Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res 47:3624–3634

    Article  CAS  Google Scholar 

  • Unuabonah EI, Adebowale KO, Olu-Owolabi BI (2007) Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. J Hazard Mater 144:386–395

    Article  CAS  Google Scholar 

  • Urbano BF, Villenas I, Rivas BL, Campos CH (2015) Cationic polymer–TiO2 nanocomposite sorbent for arsenate removal. Chem Eng J 268:362–370

    Article  CAS  Google Scholar 

  • Viraraghavan T, Subramanian KS, Aruldoss JA (1999) Arsenic in drinking water—problems and solutions. Water SciTechnol 40:69–76

    CAS  Google Scholar 

  • Williams AG, Scherer MM (2004) Spectroscopic evidence for Fe (II)− Fe (III) electron transfer at the iron oxide− water interface. Environ Sci Technol 38:4782–4790

    Article  CAS  Google Scholar 

  • Yoon Y, Park WK, Hwang TM, Yoon DH, Yang WS, Kang JW (2016) Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. J Hazard Mater 304:196–204

    Article  CAS  Google Scholar 

  • Zhang S, Liu CJ, Luan ZK, Peng XJ, Ren HJ, Wang J (2008) Arsenate removal from aqueous solutions using modified red mud. J Hazard Mater 152:486–492

    Article  CAS  Google Scholar 

  • Zhang W, Singh P, Paling E, Delides S (2004) Arsenic removal from contaminated water by natural iron ores. Miner Eng 17:517–524

    Article  CAS  Google Scholar 

  • Zhao K, Guo HM (2014) Behavior and mechanism of arsenate adsorption on activated natural siderite: evidences from FTIR and XANES analysis. Environ Sci Res 21:1944–1953

    Article  CAS  Google Scholar 

  • Zhao K, Guo HM, Zhou XQ (2014) Adsorption and heterogeneous oxidation of arsenite on modified granular natural siderite: characterization and behaviors. Appl Geochem 48:184–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study has been financially supported by the National Natural Science Foundation of China (Nos. 41672225 and 41222020), the Fundamental Research Funds for the Central Universities (No. 2652013028), and the Fok Ying-Tung Education Foundation, China (Grant No. 131017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Guo.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xiu, W., Guo, H. et al. Arsenate removal from aqueous solution by siderite synthesized under high temperature and high pressure. Environ Sci Pollut Res 24, 19402–19411 (2017). https://doi.org/10.1007/s11356-017-9611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9611-3

Keywords

Navigation