Skip to main content
Log in

Behavior and mechanism of arsenate adsorption on activated natural siderite: evidences from FTIR and XANES analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Activated natural siderite (ANS) was used to investigate its characteristics and mechanisms of As(V) adsorption from aqueous solution. Batch tests were carried out to determine effects of contact time, initial As(V) concentration, temperature, pH, background electrolyte, and coexisting anions on As(V) adsorption. Arsenic(V) adsorption on ANS well-fitted pseudo-second-order kinetics. ANS showed a high-adsorption capacity of 2.19 mg/g estimated from Langmuir isotherm at 25 °C. Thermodynamic studies indicated that As(V) adsorption on ANS was spontaneous, favorable, and endothermic. ANS adsorbed As(V) efficiently in a relatively wide pH range between 2.0 and 10.0, although the removal efficiency was slightly higher in acidic conditions than that in basic conditions. Effects of background electrolyte and coexisting anions were not significant within the concentration ranges observed in high As groundwater. Results of XRD and Fe K-edge XANES analysis suggested ANS acted as an Fe(II)/(III) hybrid system, which was quite effective in adsorbing As from aqueous solution. There was no As redox transformation during adsorption, although Fe(II) oxidation occurred in the system. Two infrared bands at 787 and 872 cm−1 after As(V) adsorption suggested that As(V) should be predominantly adsorbed on ANS via inner-sphere bidendate binuclear surface complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amstaetter K, Borch T, Larese-Casanova P, Kapppler A (2010) Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ Sci Technol 44:102–108

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, Washington DC

    Google Scholar 

  • Arai Y, Sparks DL, Davis JA (2004) Effects of dissolved carbonate on arsenate adsorption and surface speciation at the hematite–water interface. Environ Sci Technol 38:817–824

    Article  CAS  Google Scholar 

  • Banerjee K, Amy GL, Prevost M, Nour S, Jekel M, Gallagher PM, Blumenschein CD (2008) Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Res 42:3371–3378

    Article  CAS  Google Scholar 

  • Chowdhury SR, Yanful EK (2011) Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ J 25:429–437

    Article  Google Scholar 

  • Dhoble RM, Lunge S, Bhole AG, Rayalu S (2011) Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As (III) in water. Water Res 45:4769–4781

    Article  CAS  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189

    Article  CAS  Google Scholar 

  • Dong H, Guan X, Wang D, Li C, Yang X, Dou X (2011) A novel application of H2O2-Fe(II) process for arsenate removal from synthetic acid mine drainage (AMD) water. Chemosphere 85:1115–1121

    Article  CAS  Google Scholar 

  • Erdem M, Ozverdi A (2005) Lead adsorption from aqueous solution onto siderite. Sep Purif Technol 42:259–264

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Giménez J, Martínez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580

    Article  Google Scholar 

  • Goldberg S, Johnston CT (2001) Mechanism of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234:204–216

    Article  CAS  Google Scholar 

  • Guan X, Wang J, Chusuei CC (2008) Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies. J Hazard Mater 156:178–185

    Article  CAS  Google Scholar 

  • Guo H, Li Y, Zhao K (2010) Arsenate removal from aqueous solution using synthetic siderite. J Hazard Mater 176:174–180

    Article  CAS  Google Scholar 

  • Guo H, Ren Y, Liu Q, Zhao K, Li Y (2013) Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: mechanism and application. Environ Sci Technol 47:1009–1016

    Article  CAS  Google Scholar 

  • Guo H, Stüben D, Berner Z (2007a) Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. J Colloid Interface Sci 315:47–53

    Article  CAS  Google Scholar 

  • Guo H, Stüben D, Berner Z (2007b) Removal of arsenic from aqueous solution by natural siderite and hematite. Appl Geochem 22:1039–1051

    Article  CAS  Google Scholar 

  • Guo H, Stüben D, Berner Z, Kramar U (2008a) Adsorption of arsenic species from water using activated siderite–hematite column filters. J Hazard Mater 151:628–635

    Article  CAS  Google Scholar 

  • Guo H, Stüben D, Berner Z, Yu Q (2009) Characteristics of arsenic adsorption from aqueous solution: effect of arsenic species and natural adsorbents. Appl Geochem 24:657–663

    Article  CAS  Google Scholar 

  • Guo H, Yang S, Tang X, Li Y, Shen Z (2008b) Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Sci Total Environ 393:131–144

    Article  CAS  Google Scholar 

  • Guo H, Zhang B, Li Y, Berner Z, Tang X, Norra S (2011) Hydrogeological and biogeochemical constrains of As mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environ Pollut 159:876–883

    Article  CAS  Google Scholar 

  • Jia Y, Xu L, Wang X, Demopoulos GP (2007) Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim Cosmochim Acta 71:1643–1654

    Article  CAS  Google Scholar 

  • Krehula S, Štefanić G, Zadro K, Krehula LK, Marciuš M, Musić S (2012) Synthesis and properties of iridium-doped hematite (α-Fe2O3). J Alloys Compd 545:200–209

    Article  CAS  Google Scholar 

  • Lakshmipathiraj P, Narasimhan BRV, Prabhakar S, Bhaskar Raju G (2006) Adsorption of arsenate on synthetic goethite from aqueous solutions. J Hazard Mater B136:281–287

    Article  Google Scholar 

  • Liu Q, Guo H, Shan Y (2010) Adsorption of fluoride on synthetic siderite from aqueous solution. J Fluorine Chem 131:635–641

    Article  CAS  Google Scholar 

  • Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2011) Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination 281:93–99

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Melitas N, Wang J, Conklin M, O’day P, Farrell J (2002) Understanding soluble arsenate removal kinetics by zerovalent iron media. Environ Sci Technol 36:2074–2081

    Article  CAS  Google Scholar 

  • Meng X, Bang SB, Korfiatis GP (2000) Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res 34:1255–1261

    Article  CAS  Google Scholar 

  • Meng X, Korfiatis GP, Bang SB, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133:103–111

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Morin G, Ona-Nguema G, Wang Y, Menguy N, Juillot F, Proux O, Guyot F, Calas G, Brown GE (2008) Extended X-ray absorption fine structure analysis of arsenite and arsenate adsorption on maghemite. Environ Sci Technol 42:2361–2366

    Article  CAS  Google Scholar 

  • Müller K, Ciminelli VST, Dantas MSS, Willscher S (2010) A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res 44:5660–5672

    Article  Google Scholar 

  • Muñiz G, Fierro V, Celzard A, Furdin G, Gonzalez-Sánchez G, Ballinas ML (2009) Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II). J Hazard Mater 165:893–902

    Article  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  CAS  Google Scholar 

  • Ona-Nguema G, Morin G, Juillot F, Calas G, Brown GE (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ Sci Technol 39:9147–9155

    Article  CAS  Google Scholar 

  • Ona-Nguema G, Morin G, Wang Y, Foster AL, Juillot F, Calas G, Brown GE (2010) XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environ Sci Technol 44:5416–5422

    Article  CAS  Google Scholar 

  • O’Reilly SE, Strawn DG, Sparks DL (2001) Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Sci Soc Am J 65:67–77

    Article  Google Scholar 

  • Qiao J, Jiang Z, Sun B, Sun Y, Wang Q, Guan X (2012) Arsenate and arsenite removal by FeCl3: effects of pH, As/Fe ratio, initial As concentration and co-existing solutes. Sep Purif Technol 92:106–114

    Article  CAS  Google Scholar 

  • Randall SR, Sherman DM, Ragnarsdottir KV (2001) Sorption of As(V) on green rust (Fe4(II)Fe2(III)(OH)12SO4·3H2O) and lepidocrocite (g-FeOOH): surface complexes from EXAFS spectroscopy. Geochim Cosmochim Acta 65:1015–1023

    Article  CAS  Google Scholar 

  • Sherman DM, Randall SR (2003) Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 67:4223–4230

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilization of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18:1453–1477

    Article  CAS  Google Scholar 

  • Su C, Suarez DL (1997) In situ infrared speciation of absorbed carbonate on aluminum and iron oxide. Clays Clay Miner 45:814–825

    Article  CAS  Google Scholar 

  • Tang W, Li Q, Gao S, Shang J (2011) Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192:131–138

    CAS  Google Scholar 

  • Thirunavukkarasu OS, Viraraghavan T, Subramanian KS (2003) Arsenic removal from drinking water using granular ferric hydroxide. Water SA 29:161–170

    Article  CAS  Google Scholar 

  • Viraraghavan T, Subramanian KS, Arduldoss JA (1999) Arsenic in drinking water problems and solutions. Water Sci Technol 40:69–76

    Article  CAS  Google Scholar 

  • Wang Y, Morin G, Ona-Nguema G, Juillot F, Guyot F, Calas G, Brown GE (2010) Evidence for different surface speciation of arsenite and arsenate on green rust: an EXAFS and XANES Study. Environ Sci Technol 44:109–115

    Article  CAS  Google Scholar 

  • Wang Y, Reardon EJ (2001) A siderite/limestone reactor to remove arsenic and cadmium from wastewaters. Appl Geochem 16:1241–1249

    Article  CAS  Google Scholar 

  • Worasith N, Goodman BA, Neampan J, Jeyachoke N, Thiravetyan P (2011) Characterization of modified kaolin from the Ranong deposit Thailand by XRD, XRF, SEM, FTIR and EPR techniques. Clay Miner 46:539–559

    Article  CAS  Google Scholar 

  • Zeltner WA, Anderson MA (1988) Surface charge development at the goethite/aqueous solution interface: effects of CO2 adsorption. Langmuir 4:469–474

    Article  CAS  Google Scholar 

  • Zhang W, Singh P, Paling E, Delides S (2004) Arsenic removal from contaminated water by natural iron ores. Miner Eng 17:517–524

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The study has been financially supported by the National Natural Science Foundation of China (nos. 41172224 and 40872160), the Program for New Century Excellent Talents in University (no. NCET-07-0770), and the Fok Ying-Tung Education Foundation, China (grant no. 131017). The authors would like to thank the Shanghai Synchrotron Radiation Facility (Beamline BL15U) and its staff (X. Yu and A. Li) for allowing us to perform the XANES analyses. Dr. G. H. Shi is acknowledged for his help in FTIR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Guo.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, K., Guo, H. Behavior and mechanism of arsenate adsorption on activated natural siderite: evidences from FTIR and XANES analysis. Environ Sci Pollut Res 21, 1944–1953 (2014). https://doi.org/10.1007/s11356-013-2097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2097-8

Keywords

Navigation