Skip to main content
Log in

Triose phosphate use limitation of photosynthesis: short-term and long-term effects

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The triose phosphate use limitation was studied using long-term and short term changes in capacity. The TPU limitation caused increased proton motive force; long-term TPU limitation additionally reduced other photosynthetic components.

Photosynthetic responses to CO2 can be interpreted primarily as being limited by the amount or activity of Rubisco or the capacity for ribulose bisphosphate regeneration, but at high rates of photosynthesis a third response is often seen. Photosynthesis becomes insensitive to CO2 or even declines with increasing CO2, and this behavior has been associated with a limitation of export of carbon from the Calvin–Benson cycle. It is often called the triose phosphate use (TPU) limitation. We studied the long-term consequences of this limitation using plants engineered to have reduced capacity for starch or sucrose synthesis. We studied short-term consequences using temperature as a method for changing the balance of carbon fixation capacity and TPU. A long-term and short-term TPU limitation resulted in an increase in proton motive force (PMF) in the thylakoids. Once a TPU limitation was reached, any further increases in CO2 was met with a further increase in the PMF but no increase or little increase in net assimilation of CO2. A long-term TPU limitation resulted in reduced Rubisco and RuBP regeneration capacity. We hypothesize that TPU, Rubisco activity, and RuBP regeneration are regulated so that TPU is normally in slight excess of what is required, and that this results in more effective regulation than if TPU were in large excess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avenson TJ, Kanazawa A, Cruz JA, Takizawa K, Ettinger WE, Kramer DM (2005) Integrating the proton circuit into photosynthesis: progress and challenges. Plant Cell Environ 28:97–109

    Article  CAS  Google Scholar 

  • Badger MR, Sharkey TD, von Caemmerer S (1984) The relationship between steady-state gas exchange of bean leaves and the levels of carbon-reduction-cycle intermediates. Planta 160:305–313

    Article  PubMed  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  PubMed  CAS  Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Environ 30:1107–1125

    Article  PubMed  CAS  Google Scholar 

  • Cen YP, Sage RF (2005) The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol 139:979–990

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chia T, Thorneycraft D, Chapple A, Messerli G, Chen J, Zeeman S, Smith SM, Smith AM (2004) A cytosolic glycosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J 37:853–863

    Article  PubMed  CAS  Google Scholar 

  • Dahal K, Wang J, Martyn GD, Rahimy F, Vanlerberghe GC (2014) Mitochondrial alternative oxidase maintains respiration and preserves photosynthetic capacity during moderate drought in tobacco. Plant Physiol 166:1560–1574

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dahal K, Martyn GD, Vanlerberghe GC (2015) Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a nonenergy conserving respiratory electron sink. New Phytol 208:382–395

    Article  PubMed  CAS  Google Scholar 

  • Dyson BC, Allwood JW, Feil R, Xu YUN, Miller M, Bowsher CG, Goodacre R, Lunn JE, Johnson GN (2015) Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. Plant Cell Environ 38:1404–1417

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  PubMed  CAS  Google Scholar 

  • Fettke J, Malinova I, Albrecht T, Hejazi M, Steup M (2011) Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis. Plant Physiol 155:1723–1734

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Flügge UI (1999) Phosphate translocators in plastids. Annu Rev Plant Physiol Plant Mol Biol 50:27–45

    Article  PubMed  Google Scholar 

  • Gibon Y, Blasing OE, Palacios-Rojas N, Pankovic D, Hendriks JH, Fisahn J, Hohne M, Gunther M, Stitt M (2004) Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant J 39:847–862

    Article  PubMed  CAS  Google Scholar 

  • Harley PC, Weber JA, Gates DM (1985) Interactive effects of light, leaf temperature, CO2 and O2 on photosynthesis in soybean. Planta 165:249–263

    Article  PubMed  CAS  Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282

    Article  CAS  Google Scholar 

  • Harris GC, Cheesbrough JK, Walker DA (1983) Effects of mannose on photosynthetic gas exchange in spinach leaf discs. Plant Physiol 71:108–111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hattenbach A, Müller-Röber B, Nast G, Heineke D (1997) Antisense repression of both ADP-glucose pyrophosphorylase and triose phosphate translocator modifies carbohydrate partitioning in leaves. Plant Physiol 115:471–475

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. In: UC Agric. Exp. Sta. Circular 347, Berkley, pp 1–39

  • Jolliffe PA, Tregunna EB (1973) Environmental regulation of the oxygen effect on apparent photosynthesis in wheat. Can J Bot 51:841–853

    Article  CAS  Google Scholar 

  • Kanazawa A, Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci USA 99:12789–12794

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kiirats O, Cruz JA, Edwards GE, Kramer DM (2009) Feedback limitation of photosynthesis at high CO2 acts by modulating the activity of the chloroplast ATP synthase. Funct Plant Biol 36:893–901

    Article  CAS  Google Scholar 

  • Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol Plant 97:237–244

    Article  PubMed  CAS  Google Scholar 

  • Kohzuma K, Cruz JA, Akashi K, Hoshiyasu S, Munekage YN, Yokota A, Kramer DM (2009) The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ 32:209–219

    Article  PubMed  CAS  Google Scholar 

  • Kohzuma K, Dal Bosco C, Meurer J, Kramer DM (2013) Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions. J Biol Chem 288:13156–13163

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kölling K, Müller A, Flütsch P, Zeeman SC (2013) A device for single leaf labelling with CO2 isotopes to study carbon allocation and partitioning in Arabidopsis thaliana. Plant Methods 9:45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kölling K, Thalmann M, Müller A, Jenny C, Zeeman SC (2015) Carbon Partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants’ metabolic status and its circadian clock. Plant Cell Environ 38:1965–1979

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8:27–32

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Gao J, Benning C, Sharkey TD (2012) Characterization of photosynthesis in Arabidopsis ER-to-plastid lipid trafficking mutants. Photosynth Res 112:49–61

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Sharkey TD (2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218:466–473

    Article  PubMed  CAS  Google Scholar 

  • Mott KA, Jensen RG, O’Leary JW, Berry JA (1984) Photosynthesis and ribulose 1,5-bisphosphate concentrations in intact leaves of Xanthium strumarium L. Plant Physiol 76:968–971

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Neuhaus HE, Kruckeberg AL, Feil R, Stitt M (1989) Reduced-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. II. Study of the mechanisms which regulate photosynthate partitioning. Planta 178:110–122

    Article  PubMed  CAS  Google Scholar 

  • Nittylä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A novel maltose transporter is essential for starch degradation in leaves. Science 303:87–89

    Article  CAS  Google Scholar 

  • Pracharoenwattana I, Zhou W, Keech O, Francisco PB, Udomchalothorn T, Tschoep H, Stitt M, Gibon Y, Smith SM (2010) Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen. Plant J 62:785–795

    Article  PubMed  CAS  Google Scholar 

  • Riesmeier JW, Flügge UI, Schulz B, Heineke D, Heldt HW, Willmitzer L, Frommer WB (1993) Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants. Proc Natl Acad Sci USA 90:6160–6164

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rott M, Martins NdF, Thiele W, Lein W, Bock R, Kramer DM, Schöttler MA (2011) ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by overacidification of the thylakoid lumen. The Plant Cell Online 23:304–321

    Article  CAS  Google Scholar 

  • Sacksteder C, Jacoby M, Kramer D (2001) A portable, non-focusing optics spectrophotometer (NoFOSpec) for measurements of steady-state absorbance changes in intact plants. Photosynth Res 70:231–240

    Article  PubMed  CAS  Google Scholar 

  • Sage RF (1990) A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants. Plant Physiol 94:1728–1734

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sage RF, Sharkey TD (1987) The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field grown plants. Plant Physiol 84:658–664

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1988) The in vivo response of ribulose-1,5-bisphosphate carboxylase activation state and pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L. Planta 174:407–416

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Häusler RE, Kolukisaoglu Ü, Kunze R, Van Der Graaff E, Schwacke R, Catoni E, Desimone M, Flügge U-I (2002) An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. Plant J 32:685–699

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD (1985) O2-insensitive photosynthesis in C3 plants: its occurrence and a possible explanation. Plant Physiol 78:71–75

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharkey TD (2012) Mesophyll conductance: constraint on carbon acquisition by C3 plants. Plant Cell Environ 35:1881–1883

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Bernacchi CJ (2012) Photosynthetic responses to high temperature. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment: a molecular, physiological, and ecological approach. Cambridge University Press, Cambridge, pp 294–302

    Google Scholar 

  • Sharkey TD, Vanderveer PJ (1989) Stromal phosphate concentration is low during feedback limited photosynthesis. Plant Physiol 91:679–684

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharkey TD, Berry JA, Raschke K (1985) Starch and sucrose synthesis in Phaseolus vulgaris as affected by light, CO2 and abscisic acid. Plant Physiol 77:617–620

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharkey TD, Seemann JR, Berry JA (1986a) Regulation of ribulose-1,5-bisphosphate carboxylase activity in response to changing partial pressure of O2 and light in Phaseolus vulgaris. Plant Physiol 81:788–791

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharkey TD, Stitt M, Heineke D, Gerhardt R, Raschke K, Heldt HW (1986b) Limitation of photosynthesis by carbon metabolism. II O2 insensitive CO2 uptake results from limitation of triose phosphate utilization. Plant Physiol 81:1123–1129

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharkey TD, Berry JA, Sage RF (1988a) Regulation of photosynthetic electron-transport as determined by room-temperature chlorophyll a fluorescence in Phaseolus vulgaris L. Planta 176:415–424

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Kobza J, Seemann JR, Brown RH (1988b) Reduced cytosolic fructose-1,6-bisphosphatase activity leads to loss of O2 sensitivity in a Flaveria linearis mutant. Plant Physiol 86:667–671

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharkey TD, Savitch LV, Vanderveer PJ, Micallef BJ (1992) Carbon partitioning in a Flaveria linearis mutant with reduced cytosolic fructose bisphosphatase. Plant Physiol 100:210–215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2007) The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim Biophys Acta 1767:1233–1244

    Article  PubMed  CAS  Google Scholar 

  • Takizawa K, Kanazawa A, Kramer DM (2008) Depletion of stromal P i induces high ‘energy-dependent’ antenna exciton quenching (q E) by decreasing proton conductivity at CFO-CF1 ATP synthase. Plant Cell Environ 31:235–243

    Article  PubMed  CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    Article  CAS  Google Scholar 

  • Vassey TL, Quick WP, Sharkey TD, Stitt M (1991) Water stress, carbon dioxide, and light effects on sucrose-phosphate synthase activity in Phaseolus vulgaris. Physiol Plant 81:37–44

    Article  CAS  Google Scholar 

  • von Caemmerer S, Edmondson DL (1986) The relationship between steady-state gas exchange, in vivo RuP2 carboxylase activity and some carbon reduction cycle intermediates in Raphanus sativus. Aust J Plant Physiol 13:669–688

    Article  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • von Caemmerer S, Farquhar GD (1984) Effects of partial defoliation, changes in irradiance during growth, short-term water stress, and growth at enhanced p(CO2) on the photosynthetic capacity of leaves of Phaseolus vulgaris L. Planta 160:320–329

    Article  Google Scholar 

  • von Caemmerer S, Farquhar GD, Viil J, Laisk A (1985) Kinetics and activation of Rubisco and some preliminary modelling of the RuP2 pool sizes. In: Kinetics of photosynthesis. Tallin, pp 46–58

  • Walters RG, Ibrahim DG, Horton P, Kruger NJ (2004) A mutant of Arabidopsis lacking the triose-phosphate/phosphate translocator reveals metabolic regulation of starch breakdown in the light. Plant Physiol 135:891–906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weise SE, Weber A, Sharkey TD (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218:474–482

    Article  PubMed  CAS  Google Scholar 

  • Wellburn AR, Lichtenthaler H (1984) Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Adv Photosynth Res II:9–12

    Article  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    Article  CAS  Google Scholar 

  • Zhang R, Cruz JA, Kramer DM, Magallanes-Lundback ME, Dellapenna D, Sharkey TD (2009) Moderate heat stress reduces the pH component of the transthylakoid proton motive force in light-adapted, intact tobacco leaves. Plant Cell Environ 32:1538–1547

    Article  PubMed  CAS  Google Scholar 

  • Zrenner R, Krause KP, Apel P, Sonnewald U (1996) Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J 9:671–681

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by US Department of Energy grant DE-SCOOO8509 to TDS and by USDA support of salary of TDS. We thank Professor David Kramer for discussions of these data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Sharkey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J.T., Preiser, A.L., Li, Z. et al. Triose phosphate use limitation of photosynthesis: short-term and long-term effects. Planta 243, 687–698 (2016). https://doi.org/10.1007/s00425-015-2436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2436-8

Keywords

Navigation