Skip to main content

Cerium Oxide Nanoparticles: Structure, Applications, Reactivity, and Eco-Toxicology

  • Chapter
  • First Online:
Nanomaterials: A Danger or a Promise?

Abstract

In this chapter, the physical, chemical, and ecotoxicological features of nanometric cerium oxide will be discussed on the basis of the recent research. In contrast with other oxides such as SiO2, ZnO, ZrO2, or TiO2 with relevant industrial applications, ceria presents a unique redox chemistry that expanded its application to fields that take advantage of its chemical reactivity, as heterogeneous catalysis and detoxification of gaseous exhausts. In the past, several studies were strictly focused on the exploration of its eventual damage to environment and human health. CeO2, as other rare earths oxides, is basically a low toxicity substance[1] and nowadays there is vast and increasing evidence pointing to its potential role as protective compound in terms of human health. The aim of this chapter is to offer a wide scope of description of the intrinsic physicochemical behavior of this unique compound, with deep emphasis in the inherent challenge that represents a definitive understanding of its surface chemistry. The apparent contradiction between toxicity and health benefits will be discussed according to the present evidence and the intrinsic limitations of these complex studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lambert CE, Barnum EC, Shapiro R (1993) J Am Coll Toxicol 12:617

    Article  Google Scholar 

  2. J. 34-394

    Google Scholar 

  3. Adachi G, Imanaka N (1998) Chem Rev 98:1479–1514

    Article  Google Scholar 

  4. Zinkevich M, Djurovic D, Aldinger F (2006) Solid State Ionics 177:989–1001

    Article  Google Scholar 

  5. Ray SP, Cox DE (1975) J Solid State Chem 15:333–343

    Article  Google Scholar 

  6. Ray SP, Nowick AS, Cox DE (1975) J Solid State Chem 15:344–351

    Article  Google Scholar 

  7. Knappe P, Eyring L (1985) J Solid State Chem 58:312–324

    Article  Google Scholar 

  8. Touzelin B (1981) J Nucl Mater 101:92–99

    Article  Google Scholar 

  9. Kummerle EA, Guthoff F, Schweika W, Heger G (2000) J Solid State Chem 153:218–230

    Article  Google Scholar 

  10. Hull S, Norberg ST, Ahmed I, Eriksson SG, Marrocchelli D, Madden PA (2009) J Solid State Chem 182:2815–2821

    Article  Google Scholar 

  11. Shannon RD (1976) Acta Crystallographica Section A 32:751–767

    Article  Google Scholar 

  12. Shannon RD (1976) Acta Crystallogr. 32:751–767

    Article  Google Scholar 

  13. Kim D-J (1989) J Am Ceram Soc 72:1415–1421

    Article  Google Scholar 

  14. Tsunekawa S, Sivamohan R, Ito S, Kasuya A, Fukuda T (1999) Nanostruct Mater 11:141–147

    Article  Google Scholar 

  15. Zhang F, Chan SW, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP (2002) Appl Phys Lett 80:127–129

    Article  Google Scholar 

  16. Deshpande S, Patil S, Kuchibhatla SV, Seal S (2005) Appl Phys Lett 87:1–3

    Article  Google Scholar 

  17. Wu LJ, Wiesmann HJ, Moodenbaugh AR, Klie RF, Zhu YM, Welch DO, Suenaga M (2004) Phys Rev B 69

    Google Scholar 

  18. Tsunekawa S, Sivamohan R, Ohsuna T, Kasuya A, Takahashi H (1999) k. Tohji, Mater Sci Forum, pp 439–445

    Google Scholar 

  19. Tsunekawa S, Sahara R, Kawazoe Y, Ishikawa K (1999) Appl Surf Sci 152:53–56

    Article  Google Scholar 

  20. Tsunekawa S, Ito S, Kawazoe Y (2004) Appl Phys Lett 85:3845–3847

    Article  Google Scholar 

  21. Sayle TXT, Parker SC, Catlow CRA (1994) Surf Sci 316:329–336

    Article  Google Scholar 

  22. Cordatos H, Ford D, Gorte RJ (1996) J Phys Chem 100:18128–18132

    Article  Google Scholar 

  23. Mullins DR, Overbury SH, Huntley DR (1998) Surf Sci 409:307–319

    Article  Google Scholar 

  24. Baranchikov AE, Polezhaeva OS, Ivanov VK, Tretyakov YD (2010) Cryst Eng Comm 12:3531–3533

    Article  Google Scholar 

  25. Trovarelli A, De Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353–367

    Article  Google Scholar 

  26. Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285–298

    Article  Google Scholar 

  27. Lahaye J, Boehm S, Chambrion P, Ehrburger P (1996) Combust Flame 104:199–207

    Article  Google Scholar 

  28. Matatov-Meytal YI, Sheintuch M (1998) Ind Eng Chem Res 37:309–326

    Article  Google Scholar 

  29. Liu W, Flytzani-Stephanopoulos M (1995) J Catal 153:317–332

    Article  Google Scholar 

  30. Steele BCH (2000) Solid State Ionics 129:95–110

    Article  Google Scholar 

  31. Putna ES, Stubenrauch J, Vohs JM, Gorte RJ (1995) Langmuir 11:4832–4837

    Article  Google Scholar 

  32. Trovarelli A (1996) Catal Rev-Sci Eng 38:439–520

    Article  Google Scholar 

  33. Zhou KB, Wang X, Sun XM, Peng Q, Li YD (2005) J Catal 229:206–212

    Article  Google Scholar 

  34. Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J Phys Chem B 109:24380–24385

    Article  Google Scholar 

  35. Zhang J, Kumagai H, Yamamura K, Ohara S, Takami S, Morikawa A, Shinjoh H, Kaneko K, Adschiri T, Suda A (2011) Nano Lett 11:361–364

    Article  Google Scholar 

  36. Wang D, Kang Y, Doan-Nguyen V, Chen J, Kuengas R, Wieder NL, Bakhmutsky K, Gorte RJ, Murray CB (2011) Angewandte Chemie-Int Edition 50:4378–4381

    Article  Google Scholar 

  37. Li M, Liu Z, Hu Y, Shi Z, Li H (2007) Coll Surf a-Physicochem Eng Aspects 301:153–157

    Article  Google Scholar 

  38. Gopalan S, Singhal SC (2000) Scripta Mater 42:993–996

    Article  Google Scholar 

  39. Tsuzuki T, McCormick PG (2001) J Am Ceram Soc 84:1453–1458

    Article  Google Scholar 

  40. Lim G, Lee JH, Kim J, Lee HW, Hyun SH (2004) Designing, processing and properties of advanced engineering materials, Pts 1 and 2, pp. 1105–1108

    Google Scholar 

  41. Li YX, Zhou XZ, Wang Y, You XZ (2004) Mater Lett 58:245–249

    Article  Google Scholar 

  42. Hadi A, Yaacob II, Gaik CS (2006) Functional Materials and Devices, pp 105–110

    Google Scholar 

  43. Hadi A, Yaacob II, Gaik CS (2006) Functional Materials and Devices, pp 252–256

    Google Scholar 

  44. Hadi A, Yaacob II (2007) Mater Lett 61:93–96

    Article  Google Scholar 

  45. Mokkelbost T, Kaus I, Grande T, Einarsrud MA (2004) Chem Mater 16:5489–5494

    Article  Google Scholar 

  46. Jobbagy M, Sorbello C, Sileo EE (2009) J Phys Chem C 113:10853–10857

    Article  Google Scholar 

  47. Jobbagy M, Marino F, Schobrod B, Baronetti G, Laborde M (2006) Chem Mater 18:1945–1950

    Article  Google Scholar 

  48. Wang H, Zhu JJ, Zhu JM, Liao XH, Xu S, Ding T, Chen HY (2002) Phys Chem Chem Phys 4:3794–3799

    Article  Google Scholar 

  49. Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R (2005) Science 309:752–755

    Article  Google Scholar 

  50. Migani A, Vayssilov GN, Bromley ST, Illas F, Neyman KM (2010) Chem Commun 46:5936–5938

    Google Scholar 

  51. Migani A, Vayssilov GN, Bromley ST, Illas F, Neyman KM (2010) J Mater Chem 20:10535–10546

    Article  Google Scholar 

  52. Arenas MA, Bethencourt M, Botana FJ, De Damborenea J, Marcos M (2001) Corros Sci 43:157–170

    Article  Google Scholar 

  53. Arenas MA, Conde A, De Damborenea JJ (2002) Corros Sci 44:511–520

    Article  Google Scholar 

  54. Creus J, Brezault F, Rebere C, Gadouleau M (2006) Surf Coat Technol 200:4636–4645

    Article  Google Scholar 

  55. Ferreira MGS, Duarte RG, Montemor MF, SimÃμes AMP (2004) Electrochimica Acta 49:2927–2935

    Article  Google Scholar 

  56. Hinton BRW, Wilson L (1989) Corros Sci 29(967–975):977–985

    Google Scholar 

  57. Lu YC, Ives MB (1993) Corros Sci 34(1773–1781):1783–1785

    Google Scholar 

  58. Lu YC, Ives MB (1995) Corros Sci 37:145–155

    Article  Google Scholar 

  59. Mitra SK, Roy SK, Bose SK (1993) Oxid Metals 39:221–229

    Article  Google Scholar 

  60. Montemor MF, SimÃμes AM, Ferreira MGS (2001) Prog Org Coat 43:274–281

    Article  Google Scholar 

  61. Montemor MF, SimÃμes AM, Ferreira MGS (2002) Prog Org Coat 44:111–120

    Article  Google Scholar 

  62. Montemor MF, Trabelsi W, Zheludevich M, Ferreira MGS (2006) Prog Org Coat 57:67–77

    Article  Google Scholar 

  63. Nazeri A, Trzaskoma-Paulette PP, Bauer D (1997) J Sol–Gel Sci Technol 10:317–331

    Article  Google Scholar 

  64. Seal S, Bose SK, Roy SK (1994) Oxid Metals 41:139–178

    Article  Google Scholar 

  65. Wang C, Jiang F, Wang F (2004) Corros Sci 46:75–89

    Article  Google Scholar 

  66. Wang H, Akid R (2008) Corros Sci 50:1142–1148

    Article  Google Scholar 

  67. Bethencourt M, Botana FJ, Calvino JJ, Marcos M, Rodriguez-Chacon MA (1998) Corros Sci 40:1803–1819

    Article  Google Scholar 

  68. Patil S, Kuiry SC, Seal S, Vanfleet R (2002) J Nanoparticle Res 4:433–438

    Article  Google Scholar 

  69. Tsukuma K (1986) Am Ceram Soc Bull 65:1386–1389

    Google Scholar 

  70. Tsukuma K, Shimada M (1985) J Materials Science 20:1178–1184

    Article  Google Scholar 

  71. Masui T, Fujiwara K, Machida K, Adachi G, Sakata T, Mori H (1997) Chem Mater 9:2197–2204

    Article  Google Scholar 

  72. Tsunekawa S, Fukuda T, Kasuya A (2000) J Appl Phys 87:1318–1321

    Article  Google Scholar 

  73. Nie JC, Hua ZY, Dou RF, Tu QY (2008) J Appl Physs 103

    Google Scholar 

  74. Zhang F, Jin Q, Chan SW (2004) J Appl Phys 95:4319–4326

    Article  Google Scholar 

  75. Yin LX, Wang YQ, Pang GS, Koltypin Y, Gedanken A (2002) J Coll Interface Sci 246:78–84

    Article  Google Scholar 

  76. Zhang YW, Si R, Liao CS, Yan CH, Xiao CX, Kou Y (2003) J Phys Chem B 107:10159–10167

    Article  Google Scholar 

  77. Patsalas P, Logothetidis S, Sygellou L, Kennou S (2003) Phys Rev B Condens Matter Mater Phys 68:351041–3510413

    Article  Google Scholar 

  78. Corma A, Atienzar P, GarcÃ-a H, Chane-Ching JY (2004) Nat Mater 3: 394–397

    Google Scholar 

  79. Xie YB, Yuan CW (2003) Appl Catal B-Environ 46:251–259

    Article  Google Scholar 

  80. Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH (2005) Appl Catal a-Gen 285:181–189

    Article  Google Scholar 

  81. Coronado JM, Maira AJ, Martinez-Arias A, Conesa JC, Soria J (2002) J Photochem Photobiol A-Chem 150:213–221

    Article  Google Scholar 

  82. Bamwenda GR, Arakawa H (2000) J Mol Catal A-Chem 161:105–113

    Article  Google Scholar 

  83. Xiao JR, Peng TY, Li R, Peng ZH, Yan CH (2006) J Solid State Chem 179:1161–1170

    Article  Google Scholar 

  84. Ji P, Zhang J, Chen F, Anpo M (2009) Appl Catal B-Environ 85:148–154

    Article  Google Scholar 

  85. Hernandez-Alonso MD, Hungria AB, Martinez-Arias A, Fernandez-Garcia M, Coronado JM, Conesa JC, Soria J (2004) Appl Catal B-Environ 50:167–175

    Article  Google Scholar 

  86. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV, Veronesi B (2007) Environ Health Perspect 115:1631–1637

    Article  Google Scholar 

  87. Kang SJ, Kim BM, Lee YJ, Chung HW (2008) Environ Mol Mutagen 49:399–405

    Article  Google Scholar 

  88. Wang JJ, Sanderson BJS, Wang H (2007) Mutat Res-Genet Toxicol Environ Mutagen 628:99–106

    Article  Google Scholar 

  89. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem. Rev. 95:735–758

    Article  Google Scholar 

  90. Herrmann JM (1999) Catalysis Today 53:115–129

    Article  Google Scholar 

  91. Serpone N, Dondi D, Albini A (2007) Inorganica Chimica Acta 360:794–802

    Article  Google Scholar 

  92. Brezova V, Gabcova S, Dvoranova D, Stako A (2005) J Photochem Photobiol B: Biol 79:121–134

    Article  Google Scholar 

  93. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) FEBS Letters 418:87–90

    Article  Google Scholar 

  94. Uchino T, Tokunaga H, Ando M, Utsumi H (2002) Toxicol in Vitro 16:629–635

    Article  Google Scholar 

  95. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Toxicol Sci 92:174–185

    Article  Google Scholar 

  96. Hidaka H, Kobayashi H, Koike T, Sato T, Serpone N (2006) J Oleo Science 55:249–261

    Article  Google Scholar 

  97. Wamer WG, Yin JJ, Wei RR (1997) Free Radic Biol Med 23:851–858

    Article  Google Scholar 

  98. Yabe S, Sato T (2003) J Solid State Chem 171:7–11

    Article  Google Scholar 

  99. Li RX, Yabe S, Yamashita M, Momose S, Yoshida S, Yin S, Sato T (2002) Mater Chem Phys 75:39–44

    Article  Google Scholar 

  100. Truffault L, Ta M-T, Devers T, Konstantinov K, Harel V, Simmonard C, Andreazza C, Nevirkovets IP, Pineau A, Verona O, Blondeau J-P (2010) Mater Res Bull 45:527–535

    Article  Google Scholar 

  101. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Nano Lett 5:2573–2577

    Article  Google Scholar 

  102. Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, Seal S, Jenkins DW, Baker CH (2009) Nanomed-Nanotech Biol Med 5:225–231

    Article  Google Scholar 

  103. Zholobak NM, Ivanov VK, Shcherbakov AB, Shaporev AS, Polezhaeva OS, Baranchikov AY, Spivak NY, Tretyakov YD (2011) J Photochem Photobiol B-Biol 102:32–38

    Article  Google Scholar 

  104. Chien W-C, Yu Y–Y (2008) Mater Lett 62:4217–4219

    Article  Google Scholar 

  105. Pan YX, Wu MM, Su Q (2004) J Phys Chem Solids 65:845–850

    Article  Google Scholar 

  106. Pan YX, Wu MM, Su Q (2004) Mater Sci Eng B-Solid State Mater Adv Technol 106:251–256

    Google Scholar 

  107. Ebendorff-Heidepriem H, Ehrt D (2000) Optical Materials 15:7–25

    Article  Google Scholar 

  108. Zych E, Brecher C, Glodo J (2000) J Phys-Condens Matter 12:1947–1958

    Article  Google Scholar 

  109. Babu S, Cho J-H, Dowding JM, Heckert E, Komanski C, Das S, Colon J, Baker CH, Bass M, Self WT, Seal S (2010) Chem Commun 46:6915–6917

    Article  Google Scholar 

  110. Kumar A, Babu S, Karakoti AS, Schulte A, Seal S (2009) Langmuir 25:10998–11007

    Article  Google Scholar 

  111. Liu XH, Chen SJ, Wang XD (2007) J Luminescence 127:650–654

    Article  Google Scholar 

  112. Wang Z, Quan Z, Lin J (2007) Inorg Chem 46:5237–5242

    Article  Google Scholar 

  113. Ansari AA, Singh SP, Malhotra BD (2011) J Alloys Compd 509:262–265

    Article  Google Scholar 

  114. Woan K, Tsai YY, Sigmund W (2010) Nanomedicine 5:233–242

    Article  Google Scholar 

  115. Tsai MS (2004) Mater Sci Eng B-Solid State Mater Adv Technol 110:132–134

    Google Scholar 

  116. Lee SH, Lu ZY, Babu SV, Matijevic E (2002) J Mater Res 17:2744–2749

    Article  Google Scholar 

  117. Kosynkin VD, Arzgatkina AA, Ivanov EN, Chtoutsa MG, Grabko AI, Kardapolov AV, Sysina NA (2000) J Alloys Compd 303:421–425

    Article  Google Scholar 

  118. Krogman KC, Druffel T, Sunkara MK (2005) Nanotechnology 16:S338–S343

    Article  Google Scholar 

  119. Karakoti A, Singh S, Dowding JM, Seal S, Self WT (2010) Chem Soc Rev 39:4422–4432

    Article  Google Scholar 

  120. Ivanov VK, Shcherbakov AB, Usatenko AV (2009) Russian Chem Rev 78:855–871

    Article  Google Scholar 

  121. Korsvik C, Patil S, Seal S, Self WT (2007) Chemical. Communications  :1056–1058

    Google Scholar 

  122. Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007) Biomaterials 28:1918–1925

    Article  Google Scholar 

  123. Heckert EG, Karakoti AS, Seal S, Self WT (2008) Biomaterials 29:2705–2709

    Article  Google Scholar 

  124. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT (2010) Chem Commun 46:2736–2738

    Article  Google Scholar 

  125. Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Nanoscale 3:1411–1420

    Article  Google Scholar 

  126. Miao L, St DK (2009) Clair. Free Radic Biol Med 47:344–356

    Article  Google Scholar 

  127. Singh S, Dosani T, Karakoti AS, Kumar A, Seal S, Self WT (2011) Biomaterials 32:6745–6753

    Article  Google Scholar 

  128. Xue Y, Luan Q, Yang D, Yao X, Zhou K (2011) J Phys Chem C 115:4433–4438

    Article  Google Scholar 

  129. Celardo I, De Nicola M, Mandoli C, Pedersen JZ, Traversa E, Ghibelli L (2011) ACS Nano 5:4537–4549

    Article  Google Scholar 

  130. Preda G, Migani A, Neyman KM, Bromley ST, Illas F, Pacchioni G (2011) J Phys Chem C 115:5817–5822

    Article  Google Scholar 

  131. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Angewandte Chemie -Int Edition 48:2308–2312

    Article  Google Scholar 

  132. Kuchma MH, Komanski CB, Colon J, Teblum A, Masunov AE, Alvarado B, Babu S, Seal S, Summy J, Baker CH (2010) Nanomedicine-Nanotech Biol Med 6(6) 738–744

    Google Scholar 

  133. Vincent A, Inerbaev TM, Babu S, Karakoti AS, Self WT, Masunov AE, Seal S (2010) Langmuir 26:7188–7198

    Google Scholar 

  134. Karakoti AS, Singh S, Kumar A, Malinska M, Kuchibhatla SVNT, Wozniak K, Self WT, Seal S (2009) J the Am Chem Soc 131: 14144–45

    Google Scholar 

  135. Safi M, Sarrouj H, Sandre O, Mignet N, Berret JF (2010) Nanotechnology 21:145103

    Article  Google Scholar 

  136. Hayes SA, Yu P, O’Keefe TJ, O’Keefe MJ, Stoffer JO (2002) J Electrochem Soc 149:C623–C630

    Article  Google Scholar 

  137. Huang SF, Li ZY, Wang XQ, Wang QX, Hu FF (2010) Ecotoxicol Environl Saf 73:89–93

    Article  Google Scholar 

  138. Heckert EG, Seal S, Self WT (2008) Environ Sci Technol 42:5014–5019

    Article  Google Scholar 

  139. Iuliano L, Pedersen JZ, Ghiselli A, Pratico D, Rotilio G, Violi F (1992) Arch Biochem Biophy 293:153–157

    Article  Google Scholar 

  140. Peng Y, Chen X, Yi G, Gao Z (2011) Chem Commun 47:2916–2918

    Article  Google Scholar 

  141. Babu S, Velez A, Wozniak K, Szydlowska J, Seal S (2007) Chem Phys Lett 442:405–408

    Article  Google Scholar 

  142. Haley TJ (1965) J Pharm Sci 54:663–670

    Article  Google Scholar 

  143. Ivanov VK, Shcherbakov AB, Ryabokon IG, Usatenko AV, Zholobak NM, Tretyakov YD (2010) Doklady Chem 430:43–46

    Article  Google Scholar 

  144. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009) Small 5:2848–2856

    Article  Google Scholar 

  145. Rzigalinski BA, S. Seal, D. Bailey, S. Patil (2009) University of Central Florida Research Foundation Inc

    Google Scholar 

  146. Seal S, Patil SD, Haldar MK, Mallik S University of Central Florida Research Foundation Inc

    Google Scholar 

  147. Sugaya K, Merchant S, Seal S, Georgieva P, Vrotsos M University of Central Florida Research Foundation Inc

    Google Scholar 

  148. McGinnis JF, Chen J, Wong L, Sezate S, Seal S, Patil S (2008) University of Central Florida Research Foundation Inc; University of Oklahoma

    Google Scholar 

  149. Sicard C, Perullini M, Spedalieri C, Coradin T, Brayner R, Livage J, Jobbagy M, Bilmes SA (2011) Chem Mater 23:1374–1378

    Article  Google Scholar 

  150. Karakoti AS, Tsigkou O, Yue S, Lee PD, Stevens MM, Jones JR, Seal S (2010) J Mater Chem 20:8912–8919

    Article  Google Scholar 

  151. Hedrick JB (1995) J Alloys and Compounds 225:609–618

    Article  Google Scholar 

  152. Choppin GR (1991) Eur J Solid State Inorg Chem 28:319–333

    Google Scholar 

  153. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Environ Toxicol Chem 27:1825–1851

    Article  Google Scholar 

  154. Kitto ME, Anderson DL, Gordon GE, Olmez I (1992) Environ Sci Technol 26:1368–1375

    Article  Google Scholar 

  155. Olmez I, Gordon GE (1985) Science 229:966–968

    Article  Google Scholar 

  156. http://ntp.niehs.nih.gov/files/Ceric_oxide2.pdf

  157. http://pubs.healtheffects.org/getfile.php?u=295

  158. http://www.epa.gov/iris/toxreviews/1018tr.pdf

  159. Neal AL (2008) Ecotoxicology 17:362–371

    Article  Google Scholar 

  160. Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, Baalousha M (2010) Environ Chem 7:50–60

    Article  Google Scholar 

  161. Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Garcia-Calvo E, Santiago J, Rosal R (2011) Toxicol Sci 119:135–145

    Article  Google Scholar 

  162. Van Hoecke K, Quik JTK, Mankiewicz-Boczek J, De Schamphelaere KAC, Elsaesser A, Van der Meeren P, Barnes C, McKerr G, Howard CV, Van De Meent D, Rydzynski K, Dawson KA, Salvati A, Lesniak A, Lynch I, Silversmit G, De Samber B, Vincze L, Janssen CR (2009) Environ Sci Technol 43:4537–4546

    Article  Google Scholar 

  163. Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, Tyler CR, Fernandes TF (2011) J Environ Monit 13:1227–1235

    Article  Google Scholar 

  164. Garcia A, Espinosa R, Delgado L, Casals E, Gonzalez E, Puntes V, Barata C, Font X, Sanchez A (2011) Desalination 269:136–141

    Article  Google Scholar 

  165. Gaiser BK, Fernandes TF, Jepson M, Lead JR, Tyler CR, Stone V (2009) Environl Health 8

    Google Scholar 

  166. Johnston BD, Scown TM, Moger J, Cumberland SA, Baalousha M, Linge K, van Aerle R, Jarvis K, Lead JR, Tyler CR (2010) Environ Sci Technol 44:1144–1151

    Article  Google Scholar 

  167. Roh JY, Park YK, Park K, Choi J (2010) Environ Toxicol Pharm 29:167–172

    Article  Google Scholar 

  168. Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, Kuang Y, Zhao Y, Chai Z (2011) Environ Sci Technol 45:3725–3730

    Article  Google Scholar 

  169. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Environ Sci Technol 40:6151–6156

    Article  Google Scholar 

  170. Fang X, Yu R, Li B, Somasundaran P, Chandran K (2010) J Coll Interf Sci 348:329–334

    Article  Google Scholar 

  171. Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Guenther D, Limbach LK (2010) Environ Sci Technol 44:8718–8723

    Article  Google Scholar 

  172. Nel AE, Maedler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Nat Mater 8:543–557

    Article  Google Scholar 

  173. Nel A, Xia T, Madler L, Li N (2006) Science 311:622–627

    Article  Google Scholar 

  174. Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Nat Mater 7:588–595

    Article  Google Scholar 

  175. Taylor U, Klein S, Petersen S, Kues W, Barcikowski S, Rath D (2010) Cytometry Part A 77A:439–446

    Google Scholar 

  176. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y (2011) Small 7:1322–1337

    Article  Google Scholar 

  177. Stark WJ (2011) Angewandte Chemie-Int Edition 50:1242–1258

    Article  Google Scholar 

  178. Baca HK, Carnes E, Singh S, Ashley C, Lopez D, Brinker CJ (2007) Acc Chem Res 40:836–845

    Article  Google Scholar 

  179. Baca HK, Ashley C, Carnes E, Lopez D, Hemming J, Dunphy D, Singh S, Chen Z, Liu N, Fan H, López GP, Brozik SM, Werner-Washburne M, Brinker CJ (2006) Science 313: 337–341

    Google Scholar 

  180. Singh S, Kumar A, Karakoti A, Seal S, Self WT (2010) Mol Biosyst 6:1813–1820

    Article  Google Scholar 

  181. Li Z, Sahle-Demessie E, Hassan AA, Sorial GA (2011) Water Res 45:4409–4418

    Article  Google Scholar 

  182. Jares-Erijman EA, Jovin TM (2003) Nat Biotech 21:1387–1395

    Article  Google Scholar 

  183. Kahru A, Savolainen K (2010) Toxicology 269:89–91

    Article  Google Scholar 

  184. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) Environ Sci Technol 40:4374–4381

    Article  Google Scholar 

  185. Oberdorster G, Oberdorster E, Oberdorster J (2005) Environ Health Perspect 113:823–839

    Article  Google Scholar 

  186. Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) In: Proceedings of the National academy of Sciences of the United States of America 104:8691–8696

    Article  Google Scholar 

  187. Chen M, von Mikecz A (2005) Exp Cell Res 305:51–62

    Article  Google Scholar 

  188. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Environ Sci Technol 41:8484–8490

    Article  Google Scholar 

  189. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) ACS Nano 2:2121–2134

    Article  Google Scholar 

  190. Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI (2007) Environ Health Perspect 115:403–409

    Article  Google Scholar 

  191. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Environ Sci Technol 41:4158–4163

    Article  Google Scholar 

  192. Li N, Hao MQ, Phalen RF, Hinds WC, Nel AE (2003) Clin Immunol 109:250–265

    Article  Google Scholar 

  193. Xiao GG, Wang MY, Li N, Loo JA, Nel AE (2003) J Biol Chem 278:50781–50790

    Article  Google Scholar 

  194. Lin W, Huang Y.-W, Zhou X.-D, Ma Y (2006) Int J Toxicol 25: 451–457

    Google Scholar 

  195. Park E-J, Choi J, Park Y-K, Park K (2008) Toxicology 245:90–100

    Article  Google Scholar 

  196. Pierscionek BK, Li Y, Yasseen AA, Colhoun LM, Schachar RA, Chen W (2010) Nanotechnology 21(3): 035102

    Google Scholar 

  197. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Biochem Biophys Res Commun 342:86–91

    Article  Google Scholar 

  198. Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE (2007) Cardiovasc Res 73:549–559

    Article  Google Scholar 

  199. Lewinski N, Colvin V, Drezek R (2008) Small 4:26–49

    Article  Google Scholar 

  200. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) British J Pharm 150:552–558

    Article  Google Scholar 

  201. Limbach LK, Li YC, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Environ Sci Technol 39:9370–9376

    Article  Google Scholar 

  202. Madler L, Stark WJ, Pratsinis SE (2002) J Mater Res 17:1356–1362

    Article  Google Scholar 

  203. Jung HJ, Kittelson DB, Zachariah MR (2005) Combust Flame 142:276–288

    Article  Google Scholar 

  204. He X, Zhang H, Ma Y, Bai W, Zhang Z, Lu K, Ding Y, Zhao Y, Chai Z (2010) Nanotechnology 21

    Google Scholar 

  205. Park E-J, Cho W-S, Jeong J (2010) Yi J.-h, Choi K, Kim Y, Park K. J Health Sci 56:387–396

    Article  Google Scholar 

  206. Yokel RA, Florence RL, Unrine JM, Tseng MT, Graham UM, Wu P, Grulke EA, Sultana R, Hardas SS, Butterfield DA (2009) Nanotoxicology 3:234–248

    Article  Google Scholar 

  207. Damoiseaux R, George S, Li M, Pokhrel S, Ji Z, France B, Xia T, Suarez E, Rallo R, Maedler L, Cohen Y, Hoek EMV, Nel A (2011) Nanoscale 3:1345–1360

    Article  Google Scholar 

  208. Simonelli F, Marmorato P, Abbas K, Ponti J, Kozempel J, Holzwarth U, Franchini F, Rossi F (2011) Ieee Transactions on Nanobioscience 10:44–50

    Article  Google Scholar 

  209. Park B, Donaldson K, Duffin R, Tran L, Kelly F, Mudway I, Morin JP, Guest R, Jenkinson P, Samaras Z, Giannouli M, Kouridis H, Martin P (2008) Inhalation Toxicol 20:547–566

    Article  Google Scholar 

  210. Auffan M, Rose J, Orsiere T, De Meo M, Thill A, Zeyons O, Proux O, Masion A, Chaurand P, Spalla O, Botta A, Wiesner MR, Bottero J-Y (2009) Nanotoxicology 3:161–U115

    Article  Google Scholar 

  211. Rothen-Rutishauser B, Grass RN, Blank F, Limbach LK, Muehlfeld C, Brandenberger C, Raemy DO, Gehr P, Stark WJ (2009) Environ Sci Technol 43:2634–2640

    Article  Google Scholar 

  212. Perez JM, Asati A, Nath S, Kaittanis C (2008) Small 4:552–556

    Article  Google Scholar 

  213. Chen J, Patil S, Seal S, McGinnis JF (2006) Nat Nanotech 1:142–150

    Article  Google Scholar 

  214. Rzigalinski BA, Bailey D, Chow L, Kuiry SC, Patil S, Merchant S, Seal S (2003) Faseb J 17:A606–A606

    Google Scholar 

  215. Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Biomaterials 28:4600–4607

    Article  Google Scholar 

  216. Fu PP, Xia QS, Lin G, Chou MW (2004) Drug Metab Rev 36:1–55

    Article  Google Scholar 

  217. Amin KA, Hassan MS, Awad E-ST, Hashem KS (2011) Int J Nanomed 6:143–149

    Article  Google Scholar 

  218. Asati A, Santra S, Kaittanis C, Perez JM (2010) ACS Nano 4:5321–5331

    Article  Google Scholar 

Download references

Acknowledgments

MP, SAB and MJ are members of CONICET. We are deeply indebted to Cecilia Speadlieri for her critical reading of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Jobbágy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Perullini, M., Aldabe Bilmes, S.A., Jobbágy, M. (2013). Cerium Oxide Nanoparticles: Structure, Applications, Reactivity, and Eco-Toxicology. In: Brayner, R., Fiévet, F., Coradin, T. (eds) Nanomaterials: A Danger or a Promise?. Springer, London. https://doi.org/10.1007/978-1-4471-4213-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4213-3_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4212-6

  • Online ISBN: 978-1-4471-4213-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics