Skip to main content
Log in

Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bimetallic nanoparticles are generally believed to have improved catalytic activity and stability due to geometric and electronic changes. In this work, biogenic-Pd (bio-Pd), biogenic-Pt (bio-Pt), and biogenic-PdPt (bio-PdPt) nanoparticles were synthesized by Shewanella oneidensis MR-1 in the absence or presence of quinone. Compared with direct microbial reduction process, the addition of anthraquinone-2,6-disulfonate (AQDS) could promote the reduction efficiency of Pd(II) or/and Pt(IV) and result in decrease of particles size. All kinds of nanoparticles could catalyze 4-nitrophenol reduction by NaBH4 and their catalytic activities took the following order: bio-PdPt (AQDS) ∼ bio-PdPt > bio-Pd (AQDS) > bio-Pd > bio-Pt (AQDS) ∼ bio-Pt. Moreover, the bio-PdPt (AQDS) nanoparticles could be reused for 6 cycles. We believe that this simple and efficient biosynthesis approach for synthesizing bimetallic bio-PdPt nanocatalysts is important for preparing active and stable catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baxter-Plant VS, Mikheenko IP, Macaskie LE (2003) Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation 14(2):83–90

    Article  CAS  Google Scholar 

  • Beliaev AS, Saffarini DA (1998) Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe (III) and Mn (IV) reduction. J Bacteriol 180(23):6292–6297

    CAS  Google Scholar 

  • Chen CS, Lai YT, Chen TC et al (2014) Synthesis and characterization of Pt nanoparticles with different morphologies in mesoporous silica SBA-15 for methanol oxidation reaction. Nanoscale 6(21):12644–12654

    Article  CAS  Google Scholar 

  • De Corte S, Hennebel T, Fitts JP et al (2011) Biosupported bimetallic Pd-Au nanocatalysts for dechlorination of environmental contaminants. Environ Sci Technol 45(19):8506–8513

    Article  CAS  Google Scholar 

  • De Corte S, Hennebel T, De Gusseme B et al (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechno 5(1):5–17

    Article  CAS  Google Scholar 

  • De Windt W, Boon N, Van den Bulcke J et al (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Anton Leeuw 90(4):377–389

    Article  Google Scholar 

  • Deplanche K, Bennett JA, Mikheenko IP et al (2014) Catalytic activity of biomass-supported Pd nanoparticles: influence of the biological component in catalytic efficacy and potential application in ‘green’ synthesis of fine chemicals and pharmaceuticals. Appl Catal B Environ 147:651–665

    Article  CAS  Google Scholar 

  • Dong Z, Le X, Dong C et al (2015) Ni@ Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. App Catal B: Environl 162:372–380

    Article  CAS  Google Scholar 

  • El-Sheikh SM, Ismail AA, Al-Sharab JF (2013) Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica. New J Chem 37(8):2399–2407

    Article  CAS  Google Scholar 

  • Ghosh SK, Mandal M, Kundu S et al (2004) Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl Catal A Gen 268(1):61–66

    Article  CAS  Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG et al (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43(15):5115–5122

    Article  CAS  Google Scholar 

  • Hennebel T, Verhagen P, Simoen H et al (2009) Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere 76(9):1221–1225

    Article  CAS  Google Scholar 

  • Hennebel T, De Corte S, Verstraete W et al (2012) Microbial production and environmental applications of Pd nanoparticles for treatment of halogenated compounds. Curr Opin Biotech 23(4):555–561

    Article  CAS  Google Scholar 

  • Hong JW, Kang SW, Choi BS et al (2012) Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 6(3):2410–2419

    Article  CAS  Google Scholar 

  • Hosseinkhani B, Søbjerg LS, Rotaru AE et al (2012) Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles. Biotechnol Bioeng 109(1):45–52

    Article  CAS  Google Scholar 

  • Humphries AC, Macaskie LE (2005) Reduction of Cr (VI) by palladized biomass of Desulfovibrio vulgaris NCIMB 8303. J Chem Technol Biot 80(12):1378–1382

    Article  CAS  Google Scholar 

  • Kim Y, Noh Y, Lim EJ et al (2014) Star-shaped Pd@Pt core–shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance. J Mater Chem A 2(19):6976–6986

    Article  CAS  Google Scholar 

  • Kobayashi H, Yamauchi M, Kitagawa H et al (2010) Atomic-level Pd–Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J Am Chen Soc 132(16):5576–5577

    Article  CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653

    Article  CAS  Google Scholar 

  • Lee YW, Ko AR, Kim DY et al (2012) Octahedral Pt-Pd alloy catalysts with enhanced oxygen reduction activity and stability in proton exchange membrane fuel cells. RSC Adv 2(3):1119–1125

    Article  CAS  Google Scholar 

  • Li C, Su Y, Lv X et al (2012a) Enhanced ethanol electrooxidation of hollow Pd nanospheres prepared by galvanic exchange reactions. Mater Lett 69:92–95

    Article  CAS  Google Scholar 

  • Li X, Wang X, Song S et al (2012b) Selectively deposited noble metal nanoparticles on Fe3O4/graphene composites: stable, recyclable, and magnetically separable catalysts. Chem Eur J 18(24):7601–7607

    Article  CAS  Google Scholar 

  • Liu G, Zhou J, Ji Q et al (2013) Accelerated removal of Sudan dye by Shewanella oneidensis MR-1 in the presence of quinones and humic acids. World J Microb Biot 29(9):1723–1730

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microb 54(6):1472–1480

    CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL et al (1996) Humic substances as electron acceptors for microbial respiration. Nature 382(6590):445–448

    Article  CAS  Google Scholar 

  • Mertens B, Blothe C, Windey K et al (2007) Biocatalytic dechlorination of lindane by nano-scale particles of Pd (0) deposited on Shewanella oneidensis. Chemosphere 66(1):99–105

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interfa 156(1):1–13

    Article  CAS  Google Scholar 

  • Oh SD, Kim MR, Choi SH et al (2008) Radiolytic synthesis of Pd–M (M = Ag, Au, Cu, Ni and Pt) alloy nanoparticles and their use in reduction of 4-nitrophenol. J Ind Eng Chem 14(5):687–692

    Article  CAS  Google Scholar 

  • Pan Y, Ma D, Liu H et al (2012) Uncoordinated carbonyl groups of MOFs as anchoring sites for the preparation of highly active Pd nano-catalysts. J Mater Chem 22(21):10834–10839

    Article  CAS  Google Scholar 

  • Pearce CI, Pattrick RAD, Law N et al (2009) Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica. Environ Technol 30(12):1313–1326

    Article  CAS  Google Scholar 

  • Qian F, Wang G, Li Y (2010) Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett 10(11):4686–4691

    Article  CAS  Google Scholar 

  • Qu L, Dai L (2005) Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J Am Chem Soc 127(31):10806–10807

    Article  CAS  Google Scholar 

  • Schröfel A, Kratošová G, Šafařík I et al (2014) Applications of biosynthesized metallic nanoparticles—a review. Acta Biomater 10(10):4023–4042

    Article  Google Scholar 

  • Senapati S, Ahmad A, Khan MI et al (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1(5):517–520

    Article  CAS  Google Scholar 

  • Shen YY, Sun Y, Zhou LN et al (2014) Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction. J Mater Chem A 2(9):2977–2984

    Article  CAS  Google Scholar 

  • Shiraishi Y, Takeda Y, Sugano Y et al (2011) Highly efficient photocatalytic dehalogenation of organic halides on TiO2 loaded with bimetallic Pd–Pt alloy nanoparticles. Chem Commun 47(27):7863–7865

    Article  CAS  Google Scholar 

  • Søbjerg LS, Lindhardt AT, Skrydstrup T et al (2011) Size control and catalytic activity of bio-supported palladium nanoparticles. Colloid Surface B 85(2):373–378

    Article  Google Scholar 

  • Takenaka S, Tsukamoto T, Matsune H et al (2013) Carbon nanotube-supported Pd–Co catalysts covered with silica layers as active and stable cathode catalysts for polymer electrolyte fuel cells. Catal Sci Technol 3(10):2723–2731

    Article  CAS  Google Scholar 

  • Tang S, Vongehr S, He G et al (2012) Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au–Pd doping. J Colloid Inter Sci 375(1):125–133

    Article  CAS  Google Scholar 

  • Tang S, Zhu J (2014) Structural and electronic properties of Pd-decorated graphene oxides and their effects on the adsorption of nitrogen oxides: insights from density functional calculations. RSC Adv 4(44):23084–23096

    Article  CAS  Google Scholar 

  • Tuo Y, Liu G, Zhou J et al (2013) Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction. Bioresource Tech 133:606–611

    Article  CAS  Google Scholar 

  • Tuo Y, Liu G, Dong B et al (2015) Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds. Sci Rep 5

  • Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio) transformation of contaminants: a review. Biotechnol Adv 27(3):256–277

    Article  CAS  Google Scholar 

  • Wang X, Liu D, Song S et al (2013) CeO2-based Pd (Pt) nanoparticles grafted onto Fe3O4/graphene: a general self-assembly approach to fabricate highly efficient catalysts with magnetic recyclable capability. Chem-Eur J 19(16):5169–5173

    Article  CAS  Google Scholar 

  • Wang Q, Li Y, Liu B et al (2015) Novel recyclable dual-heterostructured Fe3O4@ CeO2/M (M = Pt, Pd and Pt–Pd) catalysts: synergetic and redox effects for superior catalytic performance. J Mater Chem A, 2015 3(1):139–147

    Article  CAS  Google Scholar 

  • Windt WD, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325

    Article  Google Scholar 

  • Wu R, Cui L, Chen L et al (2013) Effects of bio-Au nanoparticles on electrochemical activity of Shewanella oneidensis wild type and ΔomcA/mtrC mutant. Sci Rep 3

  • Xi P, Chen F, Xie G et al (2012) Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Nanoscale 4(18):5597–5601

    Article  CAS  Google Scholar 

  • Yao T, Cui T, Fang X et al (2013) Preparation of yolk–shell FexOy/Pd@ mesoporous SiO2 composites with high stability and their application in catalytic reduction of 4-nitropheno. Nanoscale 5(13):5896–5904

    Article  CAS  Google Scholar 

  • Yong P, Paterson-Beedle M, Mikheenko IP et al (2007) From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst. Biotechnol Lett 29(4):539–544

    Article  CAS  Google Scholar 

  • Yue B, Ma Y, Tao H et al (2008) CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. J Mater Chem 18(15):1747–1750

    Article  CAS  Google Scholar 

  • Yue R, Wang H, Bin D et al (2015) Facile one-pot synthesis of Pd–PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation. J Mater Chem A 3(3):1077–1088

    Article  CAS  Google Scholar 

  • Zhang G, Yang Z, Huang C et al (2015) Small-sized and highly dispersed Pt nanoparticles loading on graphite nanoplatelets as an effective catalyst for methanol oxidation. Nanoscale 7(22):10170–10177

    Article  CAS  Google Scholar 

  • Zhang H, Jin M, Liu H et al (2011a) Facile synthesis of Pd–Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 5(10):8212–8222

  • Zhang J, Wan L, Liu L et al (2016) PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale 8(7):3962–3972

    Article  CAS  Google Scholar 

  • Zhang K, Hu X, Liu J et al (2011b) Formation of PdPt alloy nanodots on gold nanorods: tuning oxidase-like activities via composition. Langmuir 27(6):2796–2803

  • Zhang P, Li R, Huang Y et al (2014) A novel approach for the in situ synthesis of Pt–Pd nanoalloys supported on Fe3O4@C core–shell nanoparticles with enhanced catalytic activity for reduction reactions. ACS App Mater Inter 6(4):2671–2678

    Article  CAS  Google Scholar 

  • Zhao R, Gong M, Zhu H et al (2014) Seed-assisted synthesis of Pd@Au core–shell nanotetrapods and their optical and catalytic properties. Nanoscale 6(15):9273–9278

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51478076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangfei Liu.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuo, Y., Liu, G., Dong, B. et al. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. Environ Sci Pollut Res 24, 5249–5258 (2017). https://doi.org/10.1007/s11356-016-8276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8276-7

Keywords

Navigation