Skip to main content

Advertisement

Log in

Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The growth, photosynthesis, and respiration of the marine diatom Phaeodactylum tricornutum were examined under photoautotrophic and mixotrophic conditions. 100 mM glycerol, acetate, and glucose significantly increased specific growth rate, and mixotrophic growth achieved higher biomass concentrations. Under mixotrophic conditions, respiration rate (R d) and light compensation irradiance (I c) were significantly higher, but net maximum photosynthetic O2 evolution rate (P m) and saturation irradiance (I k) were depressed. Organic carbon sources decreased the cell photosynthetic pigment content and chlorophyll a to c ratio, but with a higher carotenoid to chlorophyll a ratio. Ratios of variable to maximum chlorophyll fluorescence (F v/F m) and 77 K fluorescence spectra of mixotrophic cells indicated a reduced photochemical efficiency of photosystem II. The results were accompanied by lower electron transport rate. Therefore, organic carbon sources reduced the photosynthesis efficiency, and the enhancement of biomass of P. tricornutum implied that organic carbon sources had more pronounced effects on respiration than on photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berkaloff C, Caron L, Rousseau B (1990) Subunit organization of PS I particle from brown algae and diatoms: polypeptides and pigment analysis. Photosynth Res 23:181–193, doi:10.1007/BF00035009

    Article  CAS  Google Scholar 

  • Borowitzka MA, Volcani BE (1978) The polymorphic diatom Phaeodactylum tricornutum: Ultrastructure of its morphotypes. J Phycol 14:10–21, doi:10.1111/j.1529-8817.1978.tb00625.x

    Article  Google Scholar 

  • Chen F, Johns MR (1996) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 31:601–604, doi:10.1016/S0032-9592(96)00006-4

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb Technol 20:221–224, doi:10.1016/S0141-0229(96)00116-0

    Article  CAS  Google Scholar 

  • Cooksey KE (1974) Acetate metabolism by whole cells of Phaeodactylum tricornutum Bohlin. J Phycol 10:253–257

    CAS  Google Scholar 

  • Dekker JP, Hassoldt A, Pettersson A (1995) On the nature of the F695 and F685 emission of photosystem II. In: Mathis P (ed) Photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 53–56

    Google Scholar 

  • Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis, heterotrophic fast-growing strain. II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol 18:199–205

    CAS  Google Scholar 

  • Fett JP, Coleman JR (1994) Regulation of periplasmic carbonic anhydrase expression in Chlamydomonas reinhardtii by acetate and pH. Plant Physiol 106:103–108

    PubMed  CAS  Google Scholar 

  • García MCC, Sevilla JMF, Fernandez FGA, Grima EM, Camacho FG (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12:239–248, doi:10.1023/A:1008123000002

    Article  Google Scholar 

  • García MCC, Mirón AS, Sevilla JMF, Grima EM, Camacho FG (2005) Mixotrophic growth of Phaeodactylum tricornutum Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem 40:297–305, doi:10.1016/j.procbio.2004.01.016

    Article  CAS  Google Scholar 

  • Goldschmidt-Clermont M (1986) The two genes for the small subunit of RuBp carboxylase/oxygenase are closely linked in Chlamydomonas reinhardtii. Plant Mol Biol 6:13–21, doi:10.1007/BF00021302

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Heifetz PB, Foster B, Osmond CB, Giles LG, Boynton JE (2000) Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 122:1439–1445, doi:10.1104/pp.122.4.1439

    Article  PubMed  CAS  Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in alga in the context of photoinhibition and diel changes. J Phycol 29:729–739, doi:10.1111/j.0022-3646.1993.00729.x

    Article  Google Scholar 

  • Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofinginesis in the dark. Process Biochem 40:733–738, doi:10.1016/j.procbio.2004.01.039

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New Spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Jeon YC, Cho CW, Yun YS (2006) Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb Technol 39:490–495, doi:10.1016/j.enzmictec.2005.12.021

    Article  CAS  Google Scholar 

  • Kang CD, Lee GJS, Park TH, Sim SJ (2005) Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol 68:237–241, doi:10.1007/s00253-005-1889-2

    Article  PubMed  CAS  Google Scholar 

  • Kang RJ, Wang J, Shi DJ, Cong W, Cai ZL, Ouyang F (2004) Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnol Lett 26:1429–1432, doi:10.1023/B:BILE.0000045646.23832.a5

    Article  PubMed  CAS  Google Scholar 

  • Kindle KL (1987) Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate. Plant Mol Biol 9:547–563, doi:10.1007/BF00020532

    Article  CAS  Google Scholar 

  • Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentsenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J Appl Phycol 9:559–563

    CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74:12–20, doi:10.1016/0922-338X(92)90260-2

    Article  Google Scholar 

  • Kroymann J, Schneider W, Zetsche K (1995) Opposite regulation of the copy number and the expression of plastid and mitochondrial genes by light and acetate in the green flagellate Chlorogonium. Plant Physiol 108:1641–1646

    PubMed  Google Scholar 

  • Laliberté G, de-la-Noüe J (1993) Auto-, hetero-, and mixotrophic growth of Chlamydomonas humicola (Chlorophyceae) on acetate. J Phycol 29:612–620, doi:10.1111/j.0022-3646.1993.00612.x

    Article  Google Scholar 

  • Lalucat J, Imperial J, Pares R (1984) Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79. Biotechnol Bioeng 26:677–681, doi:10.1002/bit.260260707

    Article  PubMed  CAS  Google Scholar 

  • Lewitus AJ, Caron DA, Miller KR (1991) Effects of light and glycerol on the organization of the photosynthetic apparatus in the facultative heterotroph Pyrenomonas salina (Cryptophyceae). J Phycol 27:578–587, doi:10.1111/j.0022-3646.1991.00578.x

    Article  Google Scholar 

  • Mannan RM, Pakrasi HB (1993) Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous Cyanobacterium Anabaena variabilis ATCC29413. Plant Physiol 103:971–977, doi:10.1104/pp.103.3.971

    Article  PubMed  CAS  Google Scholar 

  • Marquez FJ, Saski K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76:408–410, doi:10.1016/0922-338X(93)90034-6

    Article  CAS  Google Scholar 

  • Martinez F, Orus MI (1991) Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101. Plant Physiol 95:1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Milner HW, Lawrence NS, French CS (1950) Colloidal dispersal of chloroplast material. Science 111:633–634, doi:10.1126/science.111.2893.633

    Article  PubMed  CAS  Google Scholar 

  • Oesterhelt C, Schmälzlin E, Schmitt JM, Lokstein H (2007) Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria. Plant J 51:500–511, doi:10.1111/j.1365-313X.2007.03159.x

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 23:1121–1132, doi:10.1002/bit.260230519

    Article  CAS  Google Scholar 

  • Schneegurt MA, Sherman DM, Sherman LA (1997) Growth, physiology, and ultrastructure of a diazotrophic Cyanothece sp. Strain ATCC 51142 in mixotrophic and chemoheterotrophic cultures. J Phycol 33:632–642, doi:10.1111/j.0022-3646.1997.00632.x

    Article  CAS  Google Scholar 

  • Steinbiß HJ, Zetsche K (1986) Light and metabolite regulation of the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase and the corresponding mRNAs in the unicellular alga Chlorogonium. Planta 167:575–581, doi:10.1007/BF00391235

    Article  Google Scholar 

  • Steinmüller K, Zetsche K (1984) Photo- and metabolite regulation of the synthesis of ribulose bisphosphate carboxylase/oxygenase and the phycobiliproteins in the alga Cyanidium caldarium. Plant Physiol 76:935–939

    Article  PubMed  Google Scholar 

  • Valiente EF, Nieva M, Avendano MC, Maeso ES (1992) Uptake and utilization of fructose by Anabaena variabilis ATCC 29413 effect on respiration and photosynthesis. Plant Cell Physiol 33(3):307–313

    Google Scholar 

  • Der-Vartanian D, Espardellier FJ, Astier C (1981) Contributions of respiratory and photosynthetic pathways of a facultative photoautotrophic cyanobacterium, Aphanocapsa 6714. Plant Physiol 68:974–978

    Article  PubMed  CAS  Google Scholar 

  • Vernotte C, Picaud M, Kirilovsky D, Olive J, Ajlani G, Astier C (1992) Changes in the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6714 following light-to-dark and dark-to-light transitions. Photosynth Res 32:45–57, doi:10.1007/BF00028797

    Article  CAS  Google Scholar 

  • Wang YH, Ye JY, Mi HL, Li YG, Zhang CL (2000) Relationship between the growth of Synechococcus sp. PCC6803 on medium with glucose and the photosynthetic energy transformation. Acta Bot Sin 42(11):1122–1125

    Google Scholar 

  • Wang GH, Chen LZ, Li GB, Li DH, Hu CX, Chen HF et al (2005) Microalgae with reduction of light harvesting pigments exhibit higher photosynthesis efficiency. Chin Sci Bull 14(50):1475–1479

    Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Wen ZY, Chen F (2000) Heterotrophic production of eicosapentaenoid acid by the diatom Nitzschia laevis effects of silicate and glucose. J Ind Microbiol Biotechnol 25:218–224, doi:10.1038/sj.jim.7000056

    Article  CAS  Google Scholar 

  • Wen ZY, Chen F (2002) Perfusion culture of the diatom Nitzschia laevis for ultra-high yield of eicosapentaenoic acid. Process Biochem 38:523–529, doi:10.1016/S0032-9592(02)00174-7

    Article  CAS  Google Scholar 

  • Xie JL, Zhang YX, Li YG, Wang YH (2001) Mixotrophic cultivation of Platymonas subcordiformis. J Appl Phycol 13:343–347, doi:10.1023/A:1017532302360

    Article  Google Scholar 

  • Xu F, Cong W, Cai ZL, Ouyang F (2004) Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J Appl Phycol 16:499–503, doi:10.1007/s10811-004-5508-x

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Fan Chun Lei for his critical reviews of the manuscript. This work was supported by the National Natural Science Foundation of China (No.30370231), a grant from Guangdong Key Guiding project of Science and Technology Planning (No.2005B33201001) and a grant from Zhuhai Science and Technology Planning Project Contract Research (No. PC20061045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunshan Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Duan, S., Li, A. et al. Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum . J Appl Phycol 21, 239–246 (2009). https://doi.org/10.1007/s10811-008-9355-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-008-9355-z

Keywords

Navigation