Skip to main content
Log in

Degradation of typical antibiotics during human feces aerobic composting under different temperatures

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Four typical antibiotics were added to human feces for aerobic composting using batch reactors with sawdust as the bulk matrix. Under three composting temperatures (room temperature, 35 ± 2 °C and 55 ± 2 °C), decreases in the extractable concentrations of antibiotics in the compost were monitored for 20 days. As a result, the removals of extractable tetracycline and chlortetracycline were found to be more temperature-dependent than the removals of sulfadiazine and ciprofloxacin. However, more than 90 % of all of the extractable antibiotics were removed at 55 ± 2 °C. Three specific experiments were further conducted to identify the possible actions for antibiotic removal, including self-degradation in aqueous solution, composting with a moist sterile sawdust matrix without adding feces and composting with human feces and moist sterile sawdust. As a result, it was found that the removal of tetracycline and chlortetracycline was mainly due to chemical degradation in water, whereas the removal of sulfadiazine was mainly attributed to adsorption onto sawdust particles. The microbial activity of compost varied with temperature to a certain extent, but the differences were insignificant among different antibiotics. Although microbial action is important for organic matter decomposition, its contribution to antibiotic degradation was small for the investigated antibiotics, except for ciprofloxacin, which was degraded by up to 20 % due to microbial action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcock RE, Sweetman A, Jones KC (1999) Assessment of organic contaminant fate in waste water treatment plants I: selected compounds and physicochemical properties. Chemosphere 38:2247–2262. doi:10.1016/S0045-6535(98)00444-5

    Article  CAS  Google Scholar 

  • Arikan OA, Mulbry W, Rice C (2009) Management of antibiotic residues from agricultural sources: use of composting to reduce chlortetracycline residues in beef manure from treated animals. J Hazard Mater 164:483–489. doi:10.1016/j.jhazmat.2008.08.019

    Article  CAS  Google Scholar 

  • Asano R, Otawa K, Ozutsumi Y, Yamamoto N, Abdel-Mohsein HS, Nakai Y (2010) Development and analysis of microbial characteristics of an acidulocomposting system for the treatment of garbage and cattle manure. J Biosci Bioeng 110:419–425. doi:10.1016/j.jbiosc.2010.04.006

    Article  CAS  Google Scholar 

  • Aust MO, Godlinski F, Travis GR, Hao X, McAllister TA, Leinweber P, Thiele-Bruhn S (2008) Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environ Pollut 156:1243–1251. doi:10.1016/j.envpol.2008.03.011

    Article  CAS  Google Scholar 

  • AWWA-APHA-WEF (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington

    Google Scholar 

  • Babić S, Horvat AJM, Mutavdžić Pavlović D, Kaštelan-Macan M (2007) Determination of pKa values of active pharmaceutical ingredients. TrAC Trend Anal Chem 26:1043–1061. doi:10.1016/j.trac.2007.09.004

    Article  Google Scholar 

  • Bai F, Wang X (2010) Nitrogen-retaining property of compost in an aerobic thermophilic composting reactor for the sanitary disposal of human feces. Front Environ Sci Eng 4:228–234. doi:10.1007/s11783-010-0022-7

    Article  CAS  Google Scholar 

  • Bao Y, Zhou Q, Guan L, Wang Y (2009) Depletion of chlortetracycline during composting of aged and spiked manures. Waste Manag 29:1416–1423. doi:10.1016/j.wasman.2008.08.022

    Article  CAS  Google Scholar 

  • Białk-Bielińska A, Kumirska J, Palavinskas R, Stepnowski P (2009) Optimization of multiple reaction monitoring mode for the trace analysis of veterinary sulfonamides by LC-MS/MS. Talanta 80:947–953. doi:10.1016/j.talanta.2009.08.023

    Article  Google Scholar 

  • Capone DG, Weston DP, Miller V, Shoemaker C (1996) Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145:55–75. doi:10.1016/S0044-8486(96)01330-0

    Article  CAS  Google Scholar 

  • Chen H, Gao B, Li H, Ma LQ (2011) Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. J Contam Hydrol 126:29–36. doi:10.1016/j.jconhyd.2011.06.002

    Article  CAS  Google Scholar 

  • Ding N et al (2014) Decline in extractable kitasamycin during the composting of kitasamycin manufacturing waste with dairy manure and sawdust. J Environ Manag 134:39–46. doi:10.1016/j.jenvman.2013.12.030

    Article  CAS  Google Scholar 

  • Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253. doi:10.2134/jeq2007.0399

    Article  CAS  Google Scholar 

  • Gu C, Karthikeyan KG, Sibley SD, Pedersen JA (2007) Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66:1494–1501. doi:10.1016/j.chemosphere.2006.08.028

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Sengeløv G, Tjørnelund J (2002) Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol 42:263–271. doi:10.1007/s00244-001-0017-2

    Article  Google Scholar 

  • Ho YB, Zakaria MP, Latif PA, Saari N (2012) Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1262:160–168. doi:10.1016/j.chroma.2012.09.024

    Article  CAS  Google Scholar 

  • Ho YB, Zakaria MP, Latif PA, Saari N (2013) Degradation of veterinary antibiotics and hormone during broiler manure composting. Bioresour Technol 131:476–484. doi:10.1016/j.biortech.2012.12.194

    Article  CAS  Google Scholar 

  • Hua L, Wu W, Liu Y, McBride MB, Chen Y (2009) Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ Sci Pollut Res 16:1–9. doi:10.1007/s11356-008-0041-0

    Article  CAS  Google Scholar 

  • Kim KR, Owens G, Ok YS, Park WK, Lee DB, Kwon SI (2012) Decline in extractable antibiotics in manure-based composts during composting. Waste Manag 32:110–116. doi:10.1016/j.wasman.2011.07.026

    Article  CAS  Google Scholar 

  • Kulshrestha P, Giese RF, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38:4097–4105. doi:10.1021/es034856q

    Article  CAS  Google Scholar 

  • Li Q, Wang XC, Zhang HH, Shi HL, Hu T, Ngo HH (2013) Characteristics of nitrogen transformation and microbial community in an aerobic composting reactor under two typical temperatures. Bioresour Technol 137:270–277. doi:10.1016/j.biortech.2013.03.092

    Article  CAS  Google Scholar 

  • Li J, Cheng W, Xu L, Strong PJ, Chen H (2015) Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. Environ Sci Pollut Res 22:4587–4596. doi:10.1007/s11356-014-3665-2

    Article  CAS  Google Scholar 

  • Loftin KA, Adams CD, Meyer MT, Surampalli R (2008) Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J Environ Qual 37:378–386. doi:10.2134/jeq2007.0230

    Article  CAS  Google Scholar 

  • Loke M-L, Jespersen S, Vreeken R, Halling-Sørensen B, Tjørnelund J (2003) Determination of oxytetracycline and its degradation products by high-performance liquid chromatography–tandem mass spectrometry in manure-containing anaerobic test systems. J Chromatogr B 783:11–23. doi:10.1016/S1570-0232(02)00468-3

    Article  Google Scholar 

  • Lopez Zavala MA, Funamizu N, Takakuwa T (2004) Temperature effect on aerobic biodegradation of feces using sawdust as a matrix. Water Res 38:2405–2415. doi:10.1016/j.watres.2004.02.026

    Google Scholar 

  • Mo WY, Chen Z, Leung HM, Leung AO (2015) Application of veterinary antibiotics in China’s aquaculture industry and their potential human health risks. Environ Sci Pollut Res. doi:10.1007/s11356-015-5607-z

    Google Scholar 

  • Morrison RT, Boyd RN (1983) Organic chemistry, 4th edn. Allyn and Bacon, Boston

    Google Scholar 

  • Mutavdžić Pavlović D, Pinušić T, Periša M, Babić S (2012) Optimization of matrix solid-phase dispersion for liquid chromatography tandem mass spectrometry analysis of 12 pharmaceuticals in sediments. J Chromatogr A 1258:1–15. doi:10.1016/j.chroma.2012.08.025

    Article  Google Scholar 

  • Qiang Z, Adams C (2004) Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res 38:2874–2890. doi:10.1016/j.watres.2004.03.017

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. doi:10.1016/j.chemosphere.2006.03.026

    Article  CAS  Google Scholar 

  • Selvam A, Zhao Z, Wong JW (2012) Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin. Bioresour Technol 126:412–417. doi:10.1016/j.biortech.2011.12.073

    Article  CAS  Google Scholar 

  • Sundberg C, Smars S, Jonsson H (2004) Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresour Technol 95:145–150. doi:10.1016/j.biortech.2004.01.016

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166:145–167. doi:10.1002/jpln.200390023

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2005) Microbial inhibition by pharmaceutical antibiotics in different soils—dose–response relations determined with the iron (III) reduction test. Environ Toxicol Chem 24:869–876

    Article  CAS  Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406. doi:10.1021/es0003021

    Article  CAS  Google Scholar 

  • Wu X, Wei Y, Zheng J, Zhao X, Zhong W (2011) The behavior of tetracyclines and their degradation products during swine manure composting. Bioresour Technol 102:5924–5931. doi:10.1016/j.biortech.2011.03.007

    Article  CAS  Google Scholar 

  • Zavala MA, Funamizu N, Takakuwa T (2005) Biological activity in the composting reactor of the bio-toilet system. Bioresour Technol 96:805–812. doi:10.1016/j.biortech.2004.07.009

    Article  CAS  Google Scholar 

  • Zhang H, Huang CH (2007) Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere 66:1502–1512. doi:10.1016/j.chemosphere.2006.08.024

    Article  CAS  Google Scholar 

  • Zorpas AA, Loizidou M (2008) Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge. Bioresour Technol 99:7545–7552. doi:10.1016/j.biortech.2008.02.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 50838005), and the Program for Innovative Research Teamin Shanxi Province (Grant No. 2013KCT-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochang C. Wang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Wang, X.C., Li, Q. et al. Degradation of typical antibiotics during human feces aerobic composting under different temperatures. Environ Sci Pollut Res 23, 15076–15087 (2016). https://doi.org/10.1007/s11356-016-6664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6664-7

Keywords

Navigation