Skip to main content
Log in

The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The actual amount of fresh water readily accessible for use is <1 % of the total amount of water on earth, and is expected to shrink further due to the projected growth of the population by a third in 2050. Worse yet are the major issues of water pollution, including mining and industrial waste which account for the bulk of contamination sources. The use of aquatic macrophytes as a cost-effective and eco-friendly tool for phytoremediation is well documented. However, little is known about the fate of those plants after phytoremediation. This paper reviews the options for safe disposal of waste plant biomass after phytoremediation. Among the few mentioned in the literature are briquetting, incineration and biogasification. The economic viability of such processes and the safety of their economic products for domestic use are however, not yet established. Over half of the nations in the world are involved in mining of precious metals, and tailings dams are the widespread legacy of such activities. Thus, the disposal of polluted plant biomass onto mine storage facilities such as tailing dams could be an interim solution. There, the material can act as mulch for the establishment of stabilizing vegetation and suppress dust. Plant decomposition might liberate its contaminants, but in a site where containment is a priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelhamid AM, Gabr AA (1991) Evaluation of water hyacinth as feed for ruminants. Arch Anim Nutr (Archiv für Tierernaehrung) 41(7-8):745–756

    Article  Google Scholar 

  • Abraham M, Kurup GM (1997) Pretreatment studies of cellulose wastes for optimization of cellulase enzyme activity. Appl Biochem Biotechnol 62:201–211

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • Albers PH, Camardese MB (1993) Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands. Enviro Toxicol Chem 12(6):959–967

    Article  CAS  Google Scholar 

  • Al-Homaidan AA, Al-Ghanayem AA, Areej AH (2011) Green algae as bioindicators of heavy metal pollution in Wadi Hanifah Stream, Riyadh, Saudi Arabia. Int J Water Resour Arid Environ 1(1):10–15

    Google Scholar 

  • Amoding A, Muzira R, Bekunda MA, Woomer PL (1999) Bioproductivity and decomposition of water hyacinth in Uganda. ACSJ 7(4):433–439

    Google Scholar 

  • Anetekhai MA, Akin-Oriola GA, Aderinola OJ, Akintola SL (2007) Trace metal concentration in Macrobrachium vollenhovenii from Ologe Lagoon, Lagos Nigeria. J Afrotropical Zool Special Issue 25-29.

  • Arnell NW (1999) Climate change and global water resources. Glob Environ Chang 9:S31–S49

    Article  Google Scholar 

  • Arnell NW (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob Environ Chang 14:31–52

    Article  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24:109–122

    Article  CAS  Google Scholar 

  • Avsara Y, Tarabeah H, Kimchie S, Ozturk I (2007) Rehabilitation by constructed wetlands of available wastewater treatment plant in Sakhnin. Ecol Eng 29:27–32

    Article  Google Scholar 

  • Awasthi M, Kaur J, Rana S (2013) Bioethanol production through water hyacinth, Eichhornia crassipes, via optimization of the pre-treatment conditions. IJETAE 3(3):42–46

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutri 3(1-4):643

    Article  CAS  Google Scholar 

  • Baker A, Reeves R, Hajar A (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J and C Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Bashyal S (2010) Wastewater treatment by floating and emergent aquatic macrophytes in artificial wetland system. Doctoral dissertation. Department of Environmental Engineering, Environmental Ecology major graduate school, Sunmoon University. Republic of Korea

  • Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146

    Article  CAS  Google Scholar 

  • Bergier I, Salis SM, Miranda CHB, Ortega E, Luengo CA (2012) Biofuel production from water hyacinth in the Pantanal wetland. Ecohydrol Hydrobiol 12(1):77–84

    Article  CAS  Google Scholar 

  • Berti WR, Cunningham SD (1997) In-place inactivation of Pb in Pb-contaminated soils. Environ Sci Technol 31(5):1359–1364

    Article  CAS  Google Scholar 

  • Bhattacharya A, Kumar P (2010) Water hyacinth as a potential biofuel crop. Electron J Environ Agric Food Chem 9(1):112–122

    CAS  Google Scholar 

  • Bond J, (2002) Treasure or trouble? Mining in developing countries. World Bank and International Finance Corporation. Mining Department, World Bank Group, March 2002, Washington D. C

  • Brady NC (1990) The nature and properties of soils, 10th edn. Macmillan Publishing Company, New York, p 621

    Google Scholar 

  • Brix H, Schierup HH (1989) The use of aquatic macrophytes in water-pollution control. Ambio 18:100–107

    Google Scholar 

  • Brooks RR, Robinson BH (1998) Aquatic phytoremediation by accumulator plants. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in archaeology, microbiology, mineral exploration, phytomining and phytoremediation. CAB International, Willingford, pp 203–226

    Google Scholar 

  • Byrne MJ, Hill MP, Robertson M, King A, Jadhav A, Katembo N, Wilson J, Brudvig R, Fisher J (2010) Integrated management of water hyacinth in South Africa: development of an integrated management plan for water hyacinth control, combining biological control, herbicidal control and nutrient control, tailored to the climatic regions of South Africa. Report to the Water Research Commission, Pretoria, South Africa

    Google Scholar 

  • Canario J, Caetano M, Vale C, Cesario R (2007) Evidence for elevated production of methylmercury in salt marshes. Environ Sci Technol 41:7376–7382

    Article  CAS  Google Scholar 

  • Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48:653–663

    Article  CAS  Google Scholar 

  • Carroll C, Merton L, Burger P (2000) Impact of vegetative cover and slope runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Queensland coal mines. Aust J Soil Res 38:313–327

    Article  Google Scholar 

  • Chambers DM, Higman B (2011) Long term risks of tailing dam failure. Center for Science in Public Participation. Report, 34s

    Google Scholar 

  • Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39(10/11):135–138

    Article  CAS  Google Scholar 

  • Chen M, Zhang L-L, Li J, He X-J, Cai J-C (2015) Bioaccumulation and tolerance characteristics of a submerged plant (Ceratophyllum demersum L.) exposed to toxic metal lead. Ecotoxicol Environ Saf 122:313–321

    Article  CAS  Google Scholar 

  • Cheng J, Wang X, Huang R, Liu M, Yu C, Cen K (2014) Producing ethanol from water hyacinth through simultaneous saccharification and fermentation with acclimatized yeasts. BioResour 9(4):7666–7680

    CAS  Google Scholar 

  • Choo TP, Lee CK, Low KS, Hishamuddin O (2006) Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea). Chemosphere 62:961–967

    Article  CAS  Google Scholar 

  • Christmann P, Stolojan N (2001) Management and distribution of mineral revenue in PNG: facts and findings from the Sysmin Preparatory Study. A consultant’s perspective. Mining, Minerals and Sustainable Development. No 55. Pp.16

  • Coetzee H, Winde F, Wade PW (2006) “An assessment of sources, pathways, mechanisms and risks of current and potential future pollution of water and sediments in gold-mining areas of the Wonderfonteinspruit catchment”. Water Research Commission, Report No. 1214/06.

  • Cohen RRH (2006) Use of microbes for cost reduction of metal removal from metals and mining industry waste streams. J Clean Prod 14:1146–1157

    Article  Google Scholar 

  • Conesa HM, Robinson BH, Schulin B, Nowack B (2008) Metal extractability in acidic and neutral mine tailings from the Cartagena-La Unión Mining District (SE Spain). Appl Geochem 23:1232–1240

    Article  CAS  Google Scholar 

  • Cook WH (1971) Growing vegetation on mine residue dumps. Clean Air J 1:21–26

    Google Scholar 

  • Cooke JA, Johnson MS (2002) Ecological restoration of land with particular reference to the mining of metals and industrial minerals: a review of theory and practice. Environ Rev 10:41–71. doi:10.1139/A01-014

    Article  CAS  Google Scholar 

  • Corcoran E, Nellemann C, Baker E, Bos R, Osborn D, Savelli H (2010) Sick water? The central role of wastewater management in sustainable development. A rapid response assessment. United Nations Environment Programme, UN-HABITAT, GRID-Arendal. www.grida.no ISBN: 978-82-7701-075-5. Printed by Birkeland Trykkeri AS, Norway.

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    Article  CAS  Google Scholar 

  • Davies MP (2002) Tailings impoundment failures: are geotechnical engineers listening? Waste Geotechnics. Pp. 31–36

  • Davies MP, Martin TE (2000) “Upstream constructed tailings dams—a review of the basics”. In proceedings of Tailings and Mine Waste ’00, Fort Collins, January, Balkema Publishers, Pp. 3–15.

  • de México Gd-E (2000) Comisión Coordinadora para la Recuperación Ecológica de la Cuenca del Río Lerma Atlas ecológico de la cuenca hidrográfica del río Lerma. Tomo V: Industrial, Mexico

  • Dean JG, Bosqui FL, Lanouette KH (1972) Removing heavy metals from wastewater. Environ Sci Technol 6(6):518–522

    Article  CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40

    Article  CAS  Google Scholar 

  • Dhir B, Sharmila P, Saradhi PP (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Env Sci Technol 39:754–781

    Article  CAS  Google Scholar 

  • Dogan M, Akgul H, Inan OG, Zeren H (2015) Determination of cadmium accumulation capabilities of aquatic macrophytes Ceratophyllum demersum, Bacopa monnieri and Rotala rotundifolia. Iran J Fish Sci 14(4):1010–1017

    Google Scholar 

  • Dudka S, Adriano DC (1997) Environmental impacts of metal ore mining and processing: a review. J Environ Qual 26:590–602

    Article  CAS  Google Scholar 

  • Dunbabin JS, Bowmer KH (1992) Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Sci Total Enviro 111:151–168

    Article  CAS  Google Scholar 

  • Elifantz H, Tel-or E (2002) Heavy metal biosorption by plant biomass of the macrophyte Ludwigia stolonifera. Water Air Soil Pollut 141:207–21

    Article  CAS  Google Scholar 

  • Emmanuel D, Elsie U, Patience A (2014) Phytoremediation of xylene polluted environment, using a macrophyte Commelina benghalensis L. Asian J Plant Sci Res 4(3):1–4

    Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  Google Scholar 

  • Gashamura FR (2009) Effects of manure from water hyacinth on soil fertility and maize performance under controlled conditions in Rwanda. MSc thesis. International Master Programme at the Swedish Biodiversity Centre. Uppsala University, Sweden

    Google Scholar 

  • Gatliff EG (1994) Vegetative remediation process offers advantages over traditional pump-and-treat technologies. Remediation 4(3):343–352

    Article  Google Scholar 

  • Global Capital Magazine (2008) The economic and environmental benefits of new wastewater treatment technologies. BioteQ Environmental Technologies Inc. Pp. 51–53

  • González I, Águila E, Galán E (2007) Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management. Environ Geol 52:1581–1593

    Article  CAS  Google Scholar 

  • Gratäo PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean-up of toxic metals in the environment. Braz J Plant Physiol 17(1):53–64

    Article  Google Scholar 

  • Grigg AH (2002) Litter decomposition on directly revegetated tailings at the Kidston Gold Mine, North Queensland, Australia. Paper presented at the 2002 National Meeting of the American Society of Mining and Reclamation, Lexington KY, June 9-13, 2002. Published by ASMR, 3134 Montavesta Rd., Lexington, KY 40502

  • Gunn MD (1973) Earliest mention of planting on dumps? Afr Notes 20:190–19

    Google Scholar 

  • Gunnarsson CC, Petersen CM (2007) Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manage 27:117–129

    Article  Google Scholar 

  • Hall A (2012) Sitting on a goldmine. Water and Waste Digest. http://www.wwdmag.com/industrial/sitting-goldmine. Accessed on 12-05-2015

  • Haller WT (1995) Operational aspects of chemical, mechanical and biological control of water hyacinth in the United States. In: Charudattan R, Labrada R, Center TD, Kelly-Begazo C (eds) Strategies for water hyacinth control report of a panel of experts meeting. 11–14 September. Fort Lauderdale, Florida USA, pp 127–136

    Google Scholar 

  • Harley KLS (1990) The role of biological control in the management of water hyacinth, Eichhornia crassipes. Biocontrol News Inf 11(1):11–22

    Google Scholar 

  • Hauptfleisch KA (2015) A model for water hyacinth biological control. MSc dissertation, School of Animal, Plant and Environmental Sciences, the University of the Witwatersrand, Johannesburg, South Africa., pp 53–80

    Google Scholar 

  • Helmer R, Hespanhol I (1997) Water pollution control—a guide to the use of water quality management principles. Published on behalf of the United Nations Environment Programme, the Water Supply & Sanitation Collaborative Council and the World Health Organization by E. and F. Spon. ISBN 0 419 22910 8

  • Henry JR (2000) In an overview of the phytoremediation of lead and mercury. NNEMS Report, Washington, D.C, pp 3–9

    Google Scholar 

  • Hudson-Edwards KA, Jamieson HE, Lottermoser BG (2011) Mine wastes: past, present, future. Elements 7:375–379

    Article  Google Scholar 

  • Insam H, Domsch KH (1988) Relationship between soil organic C and microbial biomass on chronosequences of reclamation sites. Microb Ecol 15:177–188

    Article  CAS  Google Scholar 

  • Isarankura-Na-Ayudhya C, Tantimongcolwat T, Kongpanpee T, Prabkate P, Prachayasittikul V (2007) Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol: future prospects for community strengthening and sustainable development. EXCLI J 6:167–176

    Google Scholar 

  • Ismail Z, Beddri AM (2009) Potential of water hyacinth as a removal agent for heavy metals from petroleum refinery effluents. Water Air Soil Pollut 199:57–65

    Article  CAS  Google Scholar 

  • Jennings SR, Neuman DR, Blicker PS (2008) Acid mine drainage and effects on fish health and ecology: a review. Reclamation Research Group Publication, Bozeman, MT

    Google Scholar 

  • Johnson MS, Cooke JA, Stevenson JKW (1994) Mining and its environmental impact. In: Issues in environmental science and technology. Royal Society of Chemistry, London, pp 31–47

    Google Scholar 

  • Kadlec RH, Knight R (1996) Treatment wetlands. Lewis Publishers, Boca Raton, NewYork, NY, p 893

    Google Scholar 

  • Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis, Bunge). Int J Phytorem 10:31–46

    Article  CAS  Google Scholar 

  • Kalin M, Fyson A, Wheeler WN (2006) The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci Total Environ 366:395–408

    Article  CAS  Google Scholar 

  • Kara Y, Bašaran D, Kara İ, Zaytunluoğlu A, Genç H (2003) Bioaccumulation of nickel by aquatic macrophyta Lemna minor (duckweed). Int J Agric Biol 1560–8530/2003/05–3–281–283

  • Keller BEM, Lajtha K, Cristofor S (1998) Trace metal concentrations in the sediments and plants of the Danube Delta, Romania. Wetlands 18:42–50

    Article  Google Scholar 

  • Kivaisi AK (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol Eng 16:545–560

    Article  Google Scholar 

  • Kleinman R (1989) Acid mine drainage: US Bureau of Mines researches control methods for coal and metal mines, US Bureau of Mines

    Google Scholar 

  • Kumari M, Tripathi BD (2015) Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicol Environ Saf 112:80–8

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  • Labrada R (1995) Status of water hyacinth in developing countries. In: Charudattan R, Labrada R, Center TD, Kelly-Begazo C (eds) Strategies for water hyacinth control report of a panel of experts meeting. 11–14 September. 1995 Fort Lauderdale, Florida USA, pp 3–11

    Google Scholar 

  • Lehtikangas P (2001) Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 20:351–360

    Article  Google Scholar 

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357:38–53

    Article  CAS  Google Scholar 

  • Mahmood Q, Zheng P, Islam E, Hayat Y, Hassan MJ, Jilani G, Jin RC (2005) Lab scale studies on water hyacinth (Eichhornia crassipes Marts Solms) for biotreatment of textile wastewater. CJES 3(2):83–88

    Google Scholar 

  • Maine MA, Suňe N, Hadad H, Sánchez G, Bonetto C (2007) Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Chemosphere 68:1105–1113

    Article  CAS  Google Scholar 

  • Maler KG (2000) Development, ecological resources and their management: a study of complex dynamic systems. Eur Econ Rev 44:645–665

    Article  Google Scholar 

  • Malik A (2007) Environmental challenge vis-a-vis opportunity: the case of water hyacinth. Environ Int 33:122–138

    Article  CAS  Google Scholar 

  • Mannino I, Franco D, Piccioni E, Favero L, Mattiuzzo E, Zanetto G (2008) A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems. Environ Manage 41:118–129. doi:10.1007/s00267-007-9001-6

    Article  Google Scholar 

  • Manousaki E, Kokkali F, Kalogerakis N (2009) Influence of salinity on lead and cadmium accumulation by the salt cedar (Tamarix smyrnensis Bunge). J Chem Technol Biotechnol 84:877–883

    Article  CAS  Google Scholar 

  • Mara MJ (1974) Estimated values for selected water hyacinth by-products. Econ Bot 30:383–387

    Article  Google Scholar 

  • Masami GO, Usui IY, Urano N (2008) Ethanol production from the water hyacinth Eichhornia crassipes by yeast isolated from various hydrospheres. Afr J Microbiol Res 2:110–113

    Google Scholar 

  • McCarthy T (2010) The decanting of acid mine water in the Gauteng city-region analysis, prognosis and solutions. School of Geosciences, University of the Witwatersrand, Johannesburg. Published by the Gauteng City-Region Observatory, September 2010. ISBN 978-0-620-48649-1

  • Mendez MO, Glenn EP, Maier RM (2007) Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. J Environ Qua 36(1):245

    Article  CAS  Google Scholar 

  • Meurer T, Bueno NC (2012) The genera Chara and Nitella (Chlorophyta, Characeae) in the subtropical Itaipu Reservoir, Brazil. Braz J Bot 35(2):219–232

    Article  Google Scholar 

  • Mishima D, Tateda M, Ike M, Fujita M (2006) Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresour Technol 97:2166–2172

    Article  CAS  Google Scholar 

  • Mishra VK, Upadhyay AR, Pathak V, Tripathi BD (2008a) Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes. Water Air Soil Pollut 192:303–314

  • Mishra VK, Upadhyay AR, Pandey SK, Tripathi BD (2008b) Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresour Technol 99: 930–936

  • Mkandawire M, Taubert B, Dudel EG (2004) Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytorem 6(4):347–362

    Article  CAS  Google Scholar 

  • Mokhtar H, Morad N, Fizri FFA (2011) Phytoaccumulation of copper from aqueous solutions using Eichhornia Crassipes and Centella Asiatica. IJESD 2(3)

  • Moreno-Jiménez E, Manzano R, Esteban E, Peñalosa J (2010) The fate of arsenic in soils adjacent to an old mine site (Bustarviejo, Spain): mobility and transfer to native flora. J Soils Sediments 10:301–312. doi:10.1007/s11368-009-0099-4

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Vázquez S, Carpena-Ruiz RO, Esteban E, Peñalosa JM (2011) Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain: a field experiment. J Environ Manage 92:1584–1590

    Article  Google Scholar 

  • Müezzinoğlu A (2003) A review of environmental considerations on gold mining and production. Crit Rev Env Sci Technol 33(1):45–71. doi:10.1080/10643380390814451

    Article  Google Scholar 

  • Nahlik AM, Mitsch WJ (2006) Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecol Eng 28(3):246–257

    Article  Google Scholar 

  • Newete SW (2014) Hyperspectral remote sensing to detect biotic and abiotic stress in water hyacinth, (Eichhornia crassipes) (Pontederiaceae). PhD thesis. University of the Wiwatersrand, Johannesburg, South Africa, pp 65–84

    Google Scholar 

  • Oelofse SHH, Hobbs PJ, Rascher J, Cobbing JE (2007) The pollution and destruction threat of gold mining waste on the Witwatersrand—a West Rand case study. In: Paper presented at the 10th International Symposium on Environmental Issues and Waste management in Energy and Mineral Production (SWEMP, 2007), Bangkok 11–13 December 2007

    Google Scholar 

  • Okalebo JR, Othieno CO, Woomer PL, Karanja NK, Semoka JRM, Bekunda MA, Mugendi DN, Muasya RM, Bationo A, Mukhwana EJ (2006) Available technologies to replenish soil fertility in East Africa. Nutr Cycl Agroecosys 76:153–170. doi:10.1007/s10705-005-7126-7

    Article  Google Scholar 

  • Perry A, Kleinmann RLP (1991) The use of constructed wetlands in the treatment of acid mine drainage. Nat Resour Forum 15(3):178–184

    Article  Google Scholar 

  • Petrucio MM, Esteves EA (2000) Uptake rates of nitrogen and phosphorus in the water by Eichhornia crassipes and Salvinia auriculata. Rev Bras Biol 60(2):229–236

    Article  Google Scholar 

  • Pivetz BE (2001) Ground water issue: phytoremediation of contaminated soil and ground water at hazardous waste sites. United States Environmental Protection Agency, EPA/540/S-01/500 February

  • Polprasert C, Wangsuphachart S, Muttamara S (1980) Composting nightsoil and water hyacinth in the tropics. Compost Science/Land Utilization, 21 (2)

  • Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Sci 271(5250):785–788

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–321

    Article  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Maki T, Okumura C, Rahman MM (2007) Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. Chemosphere 69:493–499

    Article  CAS  Google Scholar 

  • Rai PK (2008a) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytorem 10(2) 131–158. DOI: 10.1080/15226510801913918

  • Rai PK (2008b). Phytoremediation of Hg and Cd from industrial effluent using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremdiation 10: 430–439

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Env Sci Technol 39(9):697–753. doi:10.1080/10643380801910058

    Article  CAS  Google Scholar 

  • Rebhun M, Galil N (1990) Wastewater treatment technologies. In: Zirm L, Mayer J (eds) The management of hazardous substances in the environment., pp 85–102

    Google Scholar 

  • Reddy KR, D’Angelo EM (1990) Biomass yield and nutrient removal by water hyacinth (Eichhornia crassipes) as influenced by harvesting frequency. Biomass 21:27–42

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley and Sons, New York, pp 193–229

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sharma S, Singh B, Manchanda VK (2014) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22(2):946–962. doi:10.1007/s11356-014-3635-8

    Article  CAS  Google Scholar 

  • Sheer DP, Harris DC (1982) Acidity control in the North Branch Potomac. J Water Pollut Control Fed 54(11):1441–1446

    CAS  Google Scholar 

  • Shrimali M, Singh KP (2001) New methods of nitrate removal from water. Environ Pollut 112:351–359

    Article  CAS  Google Scholar 

  • Singh JS, Gupta SR (1977) Plant Decomposition and soil respiration in terrestrial ecosystems: Bot Rev 43(4):449–528

  • Sinha S, Pandey K (2003) Nickel induced toxic effects and bioaccumulation in the submerged plant, Hydrilla verticillata (L.F.) Royle under repeated metal exposure. Bull Environ Contam Toxicol 71(6):1175–1183

    Article  CAS  Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137

    Article  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24(2-3):97–124

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Szymanski MB, Davies MP (2004) Tailings dams: design criteria and safety evaluations at closure, British Columbia Mine Reclamation Symposium, 2004, Alberta, Canada Tremblay GA, Hogan CM 2000. Mend Manual. Volume 3- Predictions. MEND 5.4.2c

  • Taylor GJ, Crowder AA (1983) Uptake and accumulation of heavy metals by Typha latifolia in wetlands of the Sudbury, Ontario region. Can J Bot 61:63–73

    Article  CAS  Google Scholar 

  • Tejeda S, Zarazúa G, Ávila-Pérez P, Carapia-Morales L, Martínez T (2010) Total reflection X-ray fluorescence spectrometric determination of elements in water hyacinth from the Lerma River. Spectrochim Acta Part B 65:483–488

    Article  CAS  Google Scholar 

  • Thayer DD, Ramey VA (1986) Mechanical harvesting of aquatic weeds—1986. Center for Aquatic Plants, University of Florida, Gainesville, FL

    Google Scholar 

  • Thomas TH, Eden RD (1990) Water hyacinth—a major neglected resource. Mat Sci Wind Energy Biomass Technol 3:2092–2096

    Google Scholar 

  • Tomé FV, Rodríguez PB, Lozano JC (2008) Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:351–357

    Article  CAS  Google Scholar 

  • Tomlin CS (2012) Decomposition of water hyacinth (Eichhornia crassipes) leaf litter on gold tailings dams and the effect of abiotic factors on the decomposition process. Dissertation, University of the Witwatersrand, Johannesburg

    Google Scholar 

  • Trouzeau LJ (1972) “Mechanical water hyacinth removal operations, Aquamarine Corporation, Blufton, Florida.” Report prepared for Florida Game and Fresh Water Commission, Putnam County Board of County Commissioners, U.S. Army Corps of Engineers, Florida Department of Natural Resources and St. Johns River Basin Improvement Association, 1972

  • Vaillant N, Monnet F, Sallanon H, Coudret A, Hitmi A (2004) Use of commercial plant species in a hydroponic system to treat domestic wastewaters. J Environ Qual 33(2):695–702

    Article  CAS  Google Scholar 

  • van Eeden ES, Liefferink M, Durand JF (2009) Legal issues concerning mine closure and social responsibility on the West Rand. TD: The J Transdiscipl Res Southern Afr 5(1):51–71

    Google Scholar 

  • van Wyk SJ (2002) An analytical investigation of the biophysical factors that inhibit successful ecological restoration of gold tailings dams. Submitted Dissertation, University of Potchefstroom

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vymazal J (2008) Constructed wetlands for wastewater treatment: a review. In: Sengupta M, Dalwani R (eds) Proceedings of Taal 2007: the 12th World Lake Conference., pp 965–980

    Google Scholar 

  • Vymazal J, Brix H, Cooper PF, Haberl R, Perfler R, Laber J (1998) Removal mechanisms and types of constructed wetlands. In: Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (eds) Constructed wetlands for wastewater treatment in Europe. Backhuys Publishers, Leiden, the Netherlands, pp 17–66

    Google Scholar 

  • Wanenge MT (2012) The use of water hyacinth mulch and sewage sludge in gold tailings to improve soil fertility and stability. Dissertation, University of the Witwatersrand, Johannesburg

    Google Scholar 

  • Wang Q, Cui Y, Dong Y (2002) Phytoremediation of polluted waters: potentials and prospects of wetland plants. Acta Biotechnol 22:199–208

    Article  CAS  Google Scholar 

  • Weiersbye IM (2007) Global review and cost comparison of conventional and phyto-technologies for mine closure. In: Fourie AB, Tibbett M, Wiertz J (eds) Mine closure 2007, proceedings of the 2nd International Mine Closure Seminar, Santiago, Chile., pp 13–29, ISBN 978-0-9804 185-0-7

    Google Scholar 

  • White PJ (2003) Heads, tails, and decisions in-between: the archaeology of mining wastes. J Socir Ind Archeol 29(2):47–66

    Google Scholar 

  • Williamson NA, Johnson MS, Bradshaw AD (1982) Mine wastes reclamation. The establishment of vegetation on metal mine wastes. Mining Journal Books Ltd

    Google Scholar 

  • Winde F, van der Walt IJ (2004) The significance of groundwater–stream interactions and fluctuating stream chemistry on waterborne uranium contamination of streams-a case study from a gold mining site in South Africa. J Hydrol 287:178–196

    Article  CAS  Google Scholar 

  • Witkowski ETF, Weiersbye IM (1998) Establishment of plants on gold slimes dams: Characterization of slimes and adjacent polluted soils at Vaal River, West Wits and Welkom operation. Plant Ecology and Conservation Series No. 6 (Report to the Anglo American Corporation)

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Xing W, Wu H, Hao B, Huang W, Liu G (2013) Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environ Sci Technol 47:4695–4703

    Article  CAS  Google Scholar 

  • Yang B, Lan CY, Yang CS, Liao WB, Chang H, Shu WS (2006) Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development. Environ Pollut 143:499–512

    Article  CAS  Google Scholar 

  • Ye ZH, Whiting SN, Lin Z-Q, Lytle CM, Qian JH, Terry N (2001) Removal and distribution of iron, manganese, cobalt and nickel with a Pennsylvania constructed wetland treating coal combustion by-product leachate. J Environ Qual 30(4):1464–1473

    Article  CAS  Google Scholar 

  • Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Working for Water (WfW), the Agricultural Research Commission (ARC) of South Africa and the Research Council of the University of the Witwatersrand (URC) for collectively funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon W. Newete.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newete, S.W., Byrne, M.J. The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res 23, 10630–10643 (2016). https://doi.org/10.1007/s11356-016-6329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6329-6

Keywords

Navigation