Skip to main content

Advertisement

Log in

Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the past, it has been difficult to discriminate between hydrogen synthesis and uptake for the three active hydrogenases in Escherichia coli (hydrogenase 1, 2, and 3); however, by combining isogenic deletion mutations from the Keio collection, we were able to see the role of hydrogenase 3. In a cell that lacks hydrogen uptake via hydrogenase 1 (hyaB) and via hydrogenase 2 (hybC), inactivation of hydrogenase 3 (hycE) decreased hydrogen uptake. Similarly, inactivation of the formate hydrogen lyase complex, which produces hydrogen from formate (fhlA) in the hyaB hybC background, also decreased hydrogen uptake; hence, hydrogenase 3 has significant hydrogen uptake activity. Moreover, hydrogen uptake could be restored in the hyaB hybC hycE and hyaB hybC fhlA mutants by expressing hycE and fhlA, respectively, from a plasmid. The hydrogen uptake results were corroborated using two independent methods (both filter plate assays and a gas-chromatography-based hydrogen uptake assay). A 30-fold increase in the forward reaction, hydrogen formation by hydrogenase 3, was also detected for the strain containing active hydrogenase 3 activity but no hydrogenase 1 or 2 activity relative to the strain lacking all three hydrogenases. These results indicate clearly that hydrogenase 3 is a reversible hydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagramyan K, Trchounian A (2003) Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli. Biochemistry (Mosc) 68:1159–1170

    Article  CAS  Google Scholar 

  • Bagramyan K, Mnatsakanyan N, Poladian A, Vassilian A, Trchounian A (2002) The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett 516:172–178

    Article  CAS  PubMed  Google Scholar 

  • Ballantine SP, Boxer DH (1986) Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. Eur J Biochem 156:277–284

    Article  CAS  PubMed  Google Scholar 

  • Blokesch M, Paschos A, Theodoratou E, Bauer A, Hube M, Huth S, Böck A (2002) Metal insertion into NiFe-hydrogenases. Biochem Soc Trans 30:674–680

    Article  CAS  PubMed  Google Scholar 

  • Böck A, Sawers G (1996) Cellular and molecular biology. In: Neidhardt FC, Curtiss JR II, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella, 2nd edn. ASM, Washington, pp 262–282

    Google Scholar 

  • Burgdorf T, De Lacey AL, Friedrich B (2002) Functional analysis by site-directed mutagenesis of the NAD+-reducing hydrogenase from Ralstonia eutropha. J Bacteriol 184:6280–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canada KA, Iwashita S, Shim H, Wood TK (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J Bacteriol 184:344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casadaban MJ (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:541–555

    Article  CAS  PubMed  Google Scholar 

  • Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14

    Article  CAS  PubMed  Google Scholar 

  • Das D, Veziroğlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Ener 26:13–28

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Lacey AL, Moiroux J, Bourdillon C (2000) Simple formal kinetics for the reversible uptake of molecular hydrogen by [Ni-Fe] hydrogenase from Desulfovibrio gigas. Eur J Biochem 267:6560–6570

    Article  PubMed  Google Scholar 

  • Domka J, Lee J, Bansal T, Wood TK (2007) Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332–346

    Article  CAS  PubMed  Google Scholar 

  • Drapal N, Böck A (1998) Interaction of the hydrogenase accessory protein HypC with HycE, the large subunit of Escherichia coli hydrogenase 3 during enzyme maturation. Biochemistry 37:2941–2948

    Article  CAS  PubMed  Google Scholar 

  • Forzi L, Sawers RG (2007) Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals 20:565–578

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Wang PY, Schneider H, Martin WG (1980) Identification and partial characterization of an Escherichia coli mutant with altered hydrogenase activity. Can J Biochem 58:361–367

    Article  CAS  PubMed  Google Scholar 

  • Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J (2005) LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 58:810–823

    Article  CAS  PubMed  Google Scholar 

  • Hansel A, Lindblad P (1998) Toward optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl Microbiol Biotechnol 50:153–160

    Article  CAS  Google Scholar 

  • Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases—ancient enzymes in modern eukaryotes. Trends Biochem Sci 27:148–153

    Article  CAS  PubMed  Google Scholar 

  • King PW, Przybyla AE (1999) Response of hya expression to external pH in Escherichia coli. J Bacteriol 181:5250–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Vardar G, Self WT, Wood TK (2007) Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. BMC Biotechnol 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD Jr, Przybyla AE (1994) Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mnatsakanyan N, Bagramyan K, Trchounian A (2004) Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate. Cell Biochem Biophys 41:357–366

    Article  CAS  PubMed  Google Scholar 

  • Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23

    Article  CAS  PubMed  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858

    Article  CAS  PubMed  Google Scholar 

  • Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N (1997) Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferment Bioeng 83:358–363

    Article  CAS  Google Scholar 

  • Richard DJ, Sawers G, Sargent F, McWalter L, Boxer DH (1999) Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology 145(Pt 10):2903–2912

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sankar P, Lee JH, Shanmugam KT (1988) Gene-product relationships of fhlA and fdv genes of Escherichia coli. J Bacteriol 170:5440–5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter M, Böhm R, Böck A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532

    Article  CAS  PubMed  Google Scholar 

  • Sawers RG, Ballantine SP, Boxer DH (1985) Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164:1324–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlensog V, Lutz S, Böck A (1994) Purification and DNA-binding properties of FHLA, the transcriptional activator of the formate hydrogenlyase system from Escherichia coli. J Biol Chem 269:19590–19596

    CAS  PubMed  Google Scholar 

  • Self WT, Hasona A, Shanmugam KT (2004) Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol 186:580–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY

    Google Scholar 

  • Vincent KA, Parkin A, Lenz O, Albracht SP, Fontecilla-Camps JC, Cammack R, Friedrich B, Armstrong FA (2005) Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases. J Am Chem Soc 127:18179–18189

    Article  CAS  PubMed  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2005) Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol 71:6762–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JW, Butland G, Greenblatt JF, Emili A, Zamble DB (2005) A role for SlyD in the Escherichia coli hydrogenase biosynthetic pathway. J Biol Chem 280:4360–4366

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Qu F, Zhu LH (1993) Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res 21:5279–5280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zirngibl C, Van Dongen W, Schworer B, Von Bunau R, Richter M, Klein A, Thauer RK (1992) H2-forming methylenetetrahydro-methanopterin dehydrogenase, a novel type of hydrogenase without iron–sulfur clusters in methanogenic archaea. Eur J Biochem 208:511–520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the National Institute of Genetics, Japan for sending the Keio and ASKA clones. This research was supported by DARPA (HR0011-06-1-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas K. Wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeda, T., Sanchez-Torres, V. & Wood, T.K. Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 76, 1035–1042 (2007). https://doi.org/10.1007/s00253-007-1086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1086-6

Keywords

Navigation