Skip to main content

Advertisement

Log in

Modelling benzo[a]pyrene in air and vegetation for different land uses and assessment of increased health risk in the Iberian Peninsula

  • Biomonitoring of atmospheric pollution: possibilities and future challenges
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The ability of the modelling system WRF + CHIMERE implemented with high spatial and temporal resolution over the Iberian Peninsula (IP) to represent the levels of benzo[a]pyrene (BaP) in air and vegetation was tested in areas where different land uses are observed. Biomonitoring data available on the levels of polycyclic aromatic hydrocarbons (PAHs) in pine needles from the IP were used to estimate the atmospheric concentrations of BaP and, at the same time, fuelled the comparison of the vegetation representations given by the model. A total of 70 sites were sampled, including urban, industrial, rural and remote locations, which revealed different performances of the method for air and vegetation concentrations of BaP. The validation of this chemistry transport model (CTM) was complemented with the data available from the European Monitoring and Evaluation Programme (EMEP) air sampling network. This, in association with a quantitative risk assessment (QRA) method, allowed the estimation of the increased risk of lung cancer due to exposure to BaPs in the IP for three target values set by the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amigo JM, Ratola N, Alves A (2011) Study of geographical trends of polycyclic aromatic hydrocarbons using pine needles. Atmos Environ 45:5988–5996

    Article  CAS  Google Scholar 

  • Andersen A, Dahlber BE, Magnus K, Wannag A (1982) Risk of cancer in the Norwegian aluminium industry. Int J Cancer 29:295–298

    Article  CAS  Google Scholar 

  • Anfodillo T, Pasqua Di Bisceglie D, Urso T (2002) Minimum cuticular conductance and cuticle features of Picea abies and Pinus cembra needles along an altitudinal gradient in the Dolomites (NE Italian Alps). Tree Physiol 22:479–487

    Article  Google Scholar 

  • Augusto S, Máguas C, Matos J, Pereira MJ, Branquinho C (2010) Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil air and pine needles. Environ Pollut 158:483–489

    Article  CAS  Google Scholar 

  • Bieser J, Aulinger A, Matthias V, Quante M (2012) Impact of emission reductions between 1980 and 2020 on atmospheric benzo[a]pyrene concentrations over Europe. Water Air Soil Pollut 223:1393–1414

    Article  CAS  Google Scholar 

  • Borrego C, Monteiro A, Pay MT, Ribeiro I, Miranda AI, Basart S, Baldasano JM (2011) How bias-correction can improve air quality forecasts over Portugal. Atmos Environ 45:6629–6641

    Article  CAS  Google Scholar 

  • Boylan JW, Russell AG (2006) PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos Environ 40:4946–4959

    Article  CAS  Google Scholar 

  • Butterfield DM, Brown RJC (2012) Polycyclic aromatic hydrocarbons in Northern Ireland. National Physical Laboratory Report AS66. Teddington, United Kingdom

  • Chen B, Xuan X, Zhu L, Wang J, Gao Y, Yang K, Shen X, Lou B (2004) Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res 38:3558–3568

    Article  CAS  Google Scholar 

  • Delgado-Saborit JM, Stark C, Harrison RM (2011) Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ Int 37:383–392

    Article  CAS  Google Scholar 

  • EMEP (2005) Regional Multicompartment Model MSCE-POP. EMEP technical report EMEP/MSC-E 5/2005. Eds. A. Gusev, E. Mantseva, V. Shatalov, B. Strukov, Moscow, Russia, 79 pp. Available in http://www.msceast.org/reports/5_2005.pdf

  • Eriksson G, Jensen S, Kylin H, Strachan W (1989) The pine needle as a monitor of atmospheric pollution. Nature 341:42–44

    Article  CAS  Google Scholar 

  • European Commission (2009) Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Amended by Regulation (EC) No 219/2009 of the European Parliament and of the Council of 11 March 2009. Off J L 87:1–17

  • European Union (2001) European Union Position Paper, Ambient air pollution by polycyclic aromatic hydrocarbons (PAH). ISBN 92-894-2057-X

  • Gasic B, MacLeod M, Scheringer M, Hungerbuhler K (2010) Assessing the impact of weather events at mid-latitudes on the atmospheric transport of chemical pollutants using a 2-dimensional multimedia meteorological model. Atmos Environ 44:4489–4496

    Article  CAS  Google Scholar 

  • Horstmann M, McLachlan MS (1998) Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmos Environ 32:1799–1809

    Article  CAS  Google Scholar 

  • Howard J, Longwell J, Marr J, Pope C, Busby W, Lafleur A, Taguizadeh K (1995) Effects of PAH isomerizations on mutagenicity of combustion products. Combust Flame 101:262–270

    Article  CAS  Google Scholar 

  • Hwang HH, Wade TL (2008) Aerial distribution, temperature-dependent seasonal variation, and sources of polycyclic aromatic hydrocarbons in pine needles from the Houston metropolitan area, Texas, USA. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:1243–1251

    Article  CAS  Google Scholar 

  • Jakeman AJ, Letcher RA, Norton JP (2006) Ten iterative steps in development and evaluation of environmental models. Environ Model Softw 21:602–614

    Article  Google Scholar 

  • Jiménez-Guerrero P, Jorba O, Baldasano JM, Gassó S (2008) The use of a modelling system as a tool for air quality management: annual high-resolution simulations and evaluation. Sci Total Environ 390:323–340

    Article  Google Scholar 

  • Jiménez-Guerrero P, Gómez-Navarro JJ, Baró R, Lorente R, Ratola N, Montávez JP (2013) Is there a common pattern of future gas-phase air pollution in Europe under diverse climate change scenarios? Clim Chang 12:661–671

    Article  Google Scholar 

  • Kallenborn R, Halsall C, Dellong M, Carlsson P (2012) The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants. J Environ Monit 14:2854–2869

    Article  CAS  Google Scholar 

  • Kim K-H, Jahan SA, Kabir E, Brown RJC (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80

    Article  CAS  Google Scholar 

  • Kiss G, Varga-Puchony Z, Tolnai B, Varga B, Gelencsér A, Krivácsy Z, Hlavay J (2001) The seasonal changes in the concentration of polycyclic aromatic hydrocarbons in precipitation and aerosol near Lake Balaton, Hungary. Environ Pollut 114:55–61

    Article  CAS  Google Scholar 

  • Lammel G, Sehili A, Tami B, Feichter J, Grassl H (2009) Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons—a modelling approach. Chemosphere 76:98–106

    Article  CAS  Google Scholar 

  • Lang Q, Hunt F, Wai CM (2000) Supercritical fluid extraction of polycyclic aromatic hydrocarbons from white pine (Pinus strobus) needles and its implications. J Environ Monit 2:639–644

    Article  CAS  Google Scholar 

  • Lehndorff E, Schwark L (2004) Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler—part II: polycyclic aromatic hydrocarbons (PAH). Atmos Environ 38:3793–3808

    Article  CAS  Google Scholar 

  • Lehndorff E, Schwark L (2009) Biomonitoring airborne parent and alkylated three-ring PAHs in the Greater Cologne Conurbation II: regional distribution patterns. Environ Pollut 157:1706–1713

    Article  CAS  Google Scholar 

  • Lindstedt G, Sollenberg J (1982) Polycyclic aromatic hydrocarbons in the occupational, environment, with special reference to benzo[a]pyrene measurements in Swedish industry. Scand J Work Environ Health 8:1–19

    Article  CAS  Google Scholar 

  • Maddalena RL, McKone TE, Riley WJ (2003) Is there a “forest filter effect” for organic pollutants? Stoch Env Res Risk A 17:231–234

    Article  Google Scholar 

  • Maliszewska-Kordybach B (1999) Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Pol J Environ Stud 8:131–136

    CAS  Google Scholar 

  • Mariussen E, Steinnes E, Breivik K, Nygård T, Schlabach M, Kålåse JA (2008) Spatial patterns of polybrominated diphenyl ethers (PBDEs) in mosses, herbivores and a carnivore from the Norwegian terrestrial biota. Sci Total Environ 404:162–170

    Article  CAS  Google Scholar 

  • Maron D, Ames B (1982) Revised methods for the Salmonella mutagenicity test. Biomed Press 113:173–215

    Google Scholar 

  • Martínez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R, Ripullone F, Sass-Klaassen U, Zweifel R (2009) Hydraulic adjustment of Scots pine across Europe. New Phytol 184:353–364

    Article  Google Scholar 

  • Matthias V, Aulinger A, Quante M (2008) Adapting CMAQ to investigate air pollution in North Sea coastal regions. Environ Model Softw 23:356–368

    Article  Google Scholar 

  • Menut L, Bessagnet B, Khvorostyanov D, Beekmann M, Blond N, Colette A, Coll I, Curci G, Foret G, Hodzic A, Mailler S, Meleux F, Monge JL, Pison I, Siour G, Turquety S, Valari M, Vautard R, Vivanco MG (2013) CHIMERE 2013: a model for regional atmospheric composition modelling. Geosci Model Dev 6:981–1028

    Article  Google Scholar 

  • Monteiro A, Ribeiro I, Techepel O, Sá E, Ferreira J, Carvalho A, Martins V, Strunk A, Galmarini S, Elbern H, Schaap M, Builtjes P, Miranda AI, Borrego C (2013) Bias correction techniques to improve air quality ensemble predictions: focus on O3 and PM over Portugal. Environ Model Assess 18:533–546

    Article  Google Scholar 

  • Morville S, Delhomme O, Millet M (2011) Seasonal and diurnal variations of PAH concentrations between rural, suburban and urban areas. Atmos Pollut Res 2:366–373

    Article  CAS  Google Scholar 

  • Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  CAS  Google Scholar 

  • Orecchio S, Gianguzza A, Culotta L (2008) Absorption of polycyclic aromatic hydrocarbons by Pinus bark: analytical method and use for environmental pollution monitoring in the Palermo area (Sicily, Italy). Environ Res 107:371–379

    Article  CAS  Google Scholar 

  • Pay MT, Piot M, Jorba O, Gassó S, Gonçalves M, Basart S, Dabdub D, Jiménez-Guerrero P, Baldasano JM (2010) A full year evaluation of the CALIOPE-EU air quality modeling system over Europe for 2004. Atmos Environ 44:3322–3342

    Article  CAS  Google Scholar 

  • Piccardo MT, Pala M, Bonaccurso B, Stella A, Redaelli A, Paola G, Valério F (2005) Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environ Pollut 133:293–301

    Article  CAS  Google Scholar 

  • Pistocchi A, Sarigiannis DA, Vizcaino P (2010) Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives. Sci Total Environ 408:3817–3830

    Article  CAS  Google Scholar 

  • Ratola N, Jiménez-Guerrero P (2015) Combined field/modelling approaches to represent the air-vegetation distribution of benzo[a]pyrene using different vegetation species. Atmos Environ 106:34–42

    Article  CAS  Google Scholar 

  • Ratola N, Lacorte S, Alves A, Barceló D (2006) Analysis of polycyclic aromatic hydrocarbons in pine needles by gas chromatography mass spectrometry: comparison of different extraction and clean-up procedures. J Chromatogr A 1114:198–204

    Article  CAS  Google Scholar 

  • Ratola N, Lacorte S, Barceló D, Alves A (2009) Microwave-assisted extraction and ultrasonic extraction to determine polycyclic aromatic hydrocarbons in needles and bark of Pinus pinaster Ait. and Pinus pinea L. by GC-MS. Talanta 77:1120–1128

    Article  CAS  Google Scholar 

  • Ratola N, Amigo JM, Alves A (2010a) Comprehensive assessment of pine needles as bioindicators of PAHs using multivariate analysis. The importance of temporal trends. Chemosphere 81:1517–1525

    Article  CAS  Google Scholar 

  • Ratola N, Amigo JM, Alves A (2010b) Levels and sources of PAHs in selected sites from Portugal: biomonitoring with Pinus pinea and Pinus pinaster needles. Arch Environ Contam Toxicol 58:631–647

    Article  CAS  Google Scholar 

  • Ratola N, Alves A, Lacorte S, Barceló D (2012) Distribution and sources of PAHs using three pine species along the Ebro river. Environ Monit Assess 184:985–999

    Article  CAS  Google Scholar 

  • RIVM (1989) Integrated criteria document PAH. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands

  • Singh KP, Malik A, Kumar R, Saxena P, Sinha S (2008) Receptor modelling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere. Environ Monit Assess 136:183–196

    Article  CAS  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG (2008). A description of the Advanced Research WRF Version 3. NCAR technical note NCAR/TN20201c475 + STR, 2008. Available at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf

  • St-Amand AD, Mayer PM, Blais JM (2007) Modeling atmospheric vegetation uptake of PBDEs using field measurements. Environ Sci Technol 41:4234–4239

    Article  CAS  Google Scholar 

  • St-Amand AD, Mayer PM, Blais JM (2009a) Modeling PAH uptake by vegetation from the air using field measurements. Atmos Environ 43:4283–4288

    Article  CAS  Google Scholar 

  • St-Amand AD, Mayer PM, Blais JM (2009b) Prediction of SVOC vegetation and atmospheric concentrations using calculated deposition velocities. Environ Int 35:851–855

    Article  CAS  Google Scholar 

  • Tian X, Liu J, Zhou G, Peng P, Wang X, Wang C (2008) Estimation of the annual scavenged amount of polycyclic aromatic hydrocarbons by forests in the Pearl River Delta of Southern China. Environ Pollut 156:306–315

    Article  CAS  Google Scholar 

  • Torseth K, Aas W, Breivik K, Fjaeraa AM, Fiebig M, Hjellbrekke AG, Lund Myhre C, Solberg S, Yttri KE (2012) Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos Chem Phys 12:5447–5481

    Article  Google Scholar 

  • Tremolada P, Burnett V, Calamari D, Jones KC (1996) Spatial distribution of PAHs in the UK atmosphere using pine needles. Environ Sci Technol 30:3570–3577

    Article  CAS  Google Scholar 

  • Vestreng V, Ntziachristos L, Semb A, Reis S, Isaksen ISA, Tarrasón L (2009) Evolution of NOx emissions in Europe with focus on road transport control measures. Atmos Chem Phys 9:1503–1520

    Article  CAS  Google Scholar 

  • Weiss P, Lorbeer G, Scharf S (2000) Regional aspects and statistical characterisation of the load with semivolatile organic compounds at remote Austrian forest sites. Chemosphere 40:1159–1171

    Article  CAS  Google Scholar 

  • Wild S, Jones K (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108

    Article  CAS  Google Scholar 

  • World Health Organisation (2000) Air quality guidelines. Chapter 5.9—PAHs, 2nd Edition, September 2000

  • Yang P, Chen J, Wang Z, Qiao X, Cai X, Tian F, Ge L (2007) Contributions of deposited particles to pine needle polycyclic aromatic hydrocarbons. J Environ Monit 9:1248–1253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the European Union Seventh Framework Programme-Marie Curie COFUND (FP7/2007–2013) under UMU Incoming Mobility Programme ACTion (U-IMPACT) Grant Agreement 267143. The Spanish Ministry of Economy and Competitiveness and the “Fondo Europeo de Desarrollo Regional” (FEDER) are acknowledged for their partial funding (projects CGL2013-48491-R and CGL2014-59677-R). Nuno Ratola thanks the “Programa Jiménez de la Espada” (ref. 19641/IV/14) from Fundación Séneca—Science and Technology Agency in the Region of Murcia and Pedro Jiménez-Guerrero acknowledges the Ramón y Cajal programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Ratola.

Additional information

Responsible editor: Constantini Samara

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratola, N., Jiménez-Guerrero, P. Modelling benzo[a]pyrene in air and vegetation for different land uses and assessment of increased health risk in the Iberian Peninsula. Environ Sci Pollut Res 24, 11901–11910 (2017). https://doi.org/10.1007/s11356-015-5394-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5394-6

Keywords

Navigation