Skip to main content
Log in

Reduction of mercury (II) by humic substances—influence of pH, salinity of aquatic system

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study demonstrates that under abiotic dark conditions in aquatic system, humic substances are not only capable of converting Hg(II) to Hg0 but also able to bind Hg(II) ion. The degree of Hg(II) reduction is significantly influenced by the ratio of –COOH/–OH groups and the sulfur content in the HS, revealing a strong competition between complexation and reduction of Hg(II). This study suggests that abiotic and dark Hg(II) reduction depends on the pH and salinity of aqueous medium. At lower pH (∼4.0) and lower salinity (≤5.0 PSU), the reduction of Hg(II) to elemental mercury (Hg0) was comparatively rapid. Higher –COOH/–OH ratios in HS, favors dark abiotic reduction of Hg(II) as did a lower sulfur (S) content of HS. This study provided a rigorously controlled experimental design that showed that dark abiotic Hg(II) reduction by HS can potentially be important in the aquatic environment and is independent of the photochemical reduction observed in both fresh water and sea water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberts JJ, Schindler JE, Miller RW, Nutter D (1974) Elemental mercury evolution mediated by humic acid. Science 184:895–897

    Article  CAS  Google Scholar 

  • Allard B, Arsenie I (1991) Abiotic reduction of mercury by humic substances in aquatic system—an important process for the mercury cycle. Water Air Soil Pollut 56:457–464

    Article  CAS  Google Scholar 

  • Amyot M, Mierle G, Lean D, McQueen DJ (1997a) Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes. Geochim Cosmochim Acta 67:975–987

    Article  Google Scholar 

  • Amyot M, Gill GA, Morel FMM (1997b) Production and loss of dissolved gaseous mercury in coastal seawater. Environ Sci Technol 31:3606–3611

    Article  CAS  Google Scholar 

  • Balchand AN, Nambisan PNK (1986) Effect of pulp paper effluents on the water quality of Muvattupuzha River emptying into Cochin backwaters. Ind J Mar Sci 15:253–259

    CAS  Google Scholar 

  • Barkay T, Wagner-Döbler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52

    Article  CAS  Google Scholar 

  • Barkay T, Gillman M, Turner RR (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol 63:4267–4271

    CAS  Google Scholar 

  • Canário J, Vale C (2004) Rapid release of mercury from intertidal sediments exposed to solar radiation: a field experiment. Environ Sci Technol 38:3901–3907

    Article  Google Scholar 

  • Chakraborty P (2007) Chemical heterogeneity of humic substances and its impact on metal complexation in natural waters. PhD Thesis, Carleton University, Ottawa, Canada

  • Chakraborty P, Chakrabarti CL (2008) Competition from Cu (II), Zn (II) and Cd (II) in Pb (II) binding to Suwannee river fulvic acid. Water Air Soil Pollut 195(1–4):63–71

    Article  CAS  Google Scholar 

  • Chakraborty P, Fasfous II, Murimboh J, Chakrabarti CL (2007) Simultaneous determination of speciation parameters of Cu, Pb, Cd and Zn in model solutions of Suwannee River fulvic acid by pseudopolarography. Anal Bioanal Chem 388(2):463–474

    Article  CAS  Google Scholar 

  • Chakraborty P, Yao KM, Chennuri K, Vudamala K, Babu PVR (2014a) Interactions of mercury with different molecular weight fractions of humic substances in aquatic systems. Environ Earth Sci 72(3):931–939

    Article  CAS  Google Scholar 

  • Chakraborty P, Sharma B, Babu PVR, Yao KM, Jaychandran S (2014b) Impact of total organic carbon (in sediments) and dissolved organic carbon (in overlying water column) on Hg sequestration by coastal sediments from the central east coast of India. Mar Pollut Bull 79(1):342–347

    Article  CAS  Google Scholar 

  • Chakraborty P, Sarkar A, Vudamala K, Naik R, Nath BN (2014c) Organic matter—a key factor in controlling mercury distribution in estuarine sediment. Mar Chem. doi:10.1016/j.marchem.2014.10.005

    Google Scholar 

  • Costa M, Liss P (1999) Photoreduction of mercury in sea water and its possible implications for Hg0 air–sea fluxes. Mar Chem 68:87–95

    Article  CAS  Google Scholar 

  • Fantozzi L, Ferrara R, Frontini FP, Dini F (2007) Factors influencing the daily behaviour of dissolved gaseous mercury concentration in the Mediterranean Sea. Mar Chem 107:4–12

    Article  CAS  Google Scholar 

  • Gårdfeldt K, Munthe J, Strömberg D, Lindqvist O (2003) A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase. Sci Total Environ 304:127–136

    Article  Google Scholar 

  • Gu B, Bian Y, Miller CL, Dong W, Jiang X, Liang L (2011) Mercury reduction and complexation by natural organic matter in anoxic environments. Proc Natl Acad Sci U S A 108:1479–1483

    Article  CAS  Google Scholar 

  • Haitzer M, Aiken GR, Ryan JN (2002) Binding of mercury(II) to dissolved organic matter: the role of the mercury-to-DOM concentration ratio. Environ Sci Technol 36:3564–3570

    Article  CAS  Google Scholar 

  • Hesterberg D, Chou JW, Hutchison KJ, Sayers DE (2001) Bonding of Hg(II) to reduced organic sulfur in humic acid as affected by S/Hg ratio. Environ Sci Technol 35:2741–2745

    Article  CAS  Google Scholar 

  • Krishnakumar PK, Pillai VK (1990) Mercury near a caustic soda plant at Karwar, India. Mar Pollut Bull 21:304–307

    Article  CAS  Google Scholar 

  • Kureishy TW, Mesquita A, Sengupta R (1986) Mercury concentration in and around Binge Bay, Karwar, India., In: Qasim SZ (ed) Contribuions in Marine Science. Satyabdapurti Felicitation Volume: 247–353

  • Lin C, Pehkonen SO (1999) The chemistry of atmospheric mercury: a review. Atmos Environ 33:2067–2079

    Article  CAS  Google Scholar 

  • Mason RP, Fitzgerald WF (1990) Alkylmercury species in the equatorial pacific. Nature 347:457–459

    Article  CAS  Google Scholar 

  • Mason RP, Fitzgerald WF (1991) Mercury speciation in open ocean waters. Water Air Soil Pollut 56:779–789

    Article  CAS  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 58:3191–3198

    Article  CAS  Google Scholar 

  • Mauclair C, Layshock J, Carpi A (2008) Quantifying the effect of humic matter on the emission of mercury from artificial soil surfaces. Appl Geochem 23:594–601

    Article  CAS  Google Scholar 

  • Miller CL, Mason RP, Gilmour CC, Heyes A (2007) Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions. Environ Toxicol Chem 26:624–633

    Article  CAS  Google Scholar 

  • Miller CL, Southworth G, Brooks SC, Liang L, Gu B (2009) Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment. Environ Sci Technol 43:8548–8553

    Article  CAS  Google Scholar 

  • Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Ann Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • O’Driscoll N, Lean D, Loseto L, Carignan R, Siciliano S (2004) Effect of dissolved organic carbon on the photoproduction of dissolved gaseous mercury in lakes: potential impacts of forestry. Environ Sci Technol 38:2664–2672

    Article  Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter—a review. Chemosphere 55:319–331

    Article  CAS  Google Scholar 

  • Reddy MM, Ryan JN (1998) Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ Sci Technol 32:3305–3311

    Article  Google Scholar 

  • Rocha J, Junior E, Zara L, Rosa A, Dos Santos A, Burba P (2000) Reduction of mercury(II) by tropical river humic substances (Rio Negro)—a possible process of the mercury cycle in Brazil. Talanta 53:551–559

    Article  CAS  Google Scholar 

  • Rolfhus K, Fitzgerald W (2001) The evasion and spatial/temporal distribution of mercury species in Long Island Sound, CT-NY. Geochim Cosmochim Acta 65:407–418

    Article  CAS  Google Scholar 

  • Satpathy KK, Natesan U, Sarguru S, Mohanty AK, Prasad MVR, Sarkar SK (2008) Seasonal variations in mercury concentrations in the coastal waters of Kalpakkam, Southest coast of India. Curr Sci 95:374–381

    CAS  Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury—An overview. Atmos Environ 32:809–822

    Article  CAS  Google Scholar 

  • Selvaraj K (1999) Total dissolvable copper and mercury concentrations in innershelf waters, off Kalpakkam. Curr Sci 77:494–497

    CAS  Google Scholar 

  • Selvendiran P, Driscoll CT, Montesdeoca MR, Choi H-D, Holsen TM (2009) Mercury dynamics and transport in two Adirondack Lakes. Limnol Oceanogr 54:413–427

    Article  CAS  Google Scholar 

  • Si  L, Ariya PA (2008) Reduction of oxidized mercury species by dicarboxylic acids (C(2)-C(4)): Kinetic and product studies. Environ Sci & Technol, 42(14):5150–5155

  • Skogerboe RK, Wilson SA (1981) Reduction of ionic species by fulvic acid. Anal Chem 53:228–232

    Article  CAS  Google Scholar 

  • Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. J Geophys Res Biogeosci 113:G00C03

    Article  Google Scholar 

  • Skyllberg U, Bloom PR, Qian J, Lin CM, Bleam WF (2006) Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ Sci Technol 40:4174–4180

    Article  CAS  Google Scholar 

  • Vandal GM, Mason RP, Fitzgerald WF (1991) Cycling of volatile mercury in temperate lakes. Water Air Soil Pollut 56:791–803

    Article  CAS  Google Scholar 

  • Xiao Z, Stromberg D, Lindqvist O (1995) Influence of humic substances on photolysis of divalent mercury in aqueous-solution. Water Air Soil Pollut 80:789–798

    Article  CAS  Google Scholar 

  • Zheng W, Hintelmann H (2010) Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light. J Phys Chem A 114:4238–4245

    Article  CAS  Google Scholar 

  • Zheng W, Liang L, Gu B (2012) Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environ Sci Technol 46:292–299

    Article  CAS  Google Scholar 

  • Zheng W, Lin H, Mann BF, Liang L, Gu B (2013) Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions. Environ Sci Technol 47:12827–12834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Director, NIO, Goa, for his encouragement and support. This work is a part of the Council of Scientific and Industrial Research (CSIR) supported GEOSINKS (PSC0106). MC acknowledges Department of Science and Technology, India, for providing CV Raman Postdoctoral Fellowship. KV and KC are thankful to UGC and DR is thankful to CSIR for providing the junior research Fellowship. This article bears NIO contribution number 5710.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthasarathi Chakraborty.

Additional information

Responsible editor: Céline Guéguen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P., Vudamala, K., Coulibaly, M. et al. Reduction of mercury (II) by humic substances—influence of pH, salinity of aquatic system. Environ Sci Pollut Res 22, 10529–10538 (2015). https://doi.org/10.1007/s11356-015-4258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4258-4

Keywords

Navigation