Skip to main content

Advertisement

Log in

Comparability of behavioural assays using zebrafish larvae to assess neurotoxicity

  • Danio rerio as a Model in Aquatic Toxicology and Sediment Research
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Testing of compounds for neurotoxicity has become increasingly important in recent years. It has been shown that neurological disorders like autism may be related to chemical exposures, which may play a crucial role in the progression of these diseases. Special attention has been be given to the substances causing developmental neurotoxicity as the developing nervous system is more vulnerable to impacts by chemicals than the adult nervous system. The zebrafish (Danio rerio) is a well-established model species in developmental biology and an emerging model in behavioural and neurological studies. Zebrafish larvae display numerous behavioural patterns highly similar to rodents and humans. Their physical characteristics make them well suited for automated high-throughput screening. In the last years, the number of behavioural studies conducted with zebrafish larvae has increased notably. The goal of this review is to provide an overview of behavioural assays commonly used to test substances for developmental neurotoxicity. Literature from 1995 to 2014 was reviewed and focussed on assays performed with zebrafish larvae younger than 7 days post fertilization (dpf). The behavioural tests were scrutinized, and parameters describing the different experimental setups were defined. In the next step, we investigated if differences in the experimental parameters alter the outcome of the test. In order to test the comparability of behavioural assays, we analysed several studies using ethanol, valproate and pentylenetetrazole as model substances. Based on our findings, we provide recommendations which could help improve future behavioural studies performed with zebrafish larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agid Y, Buzsáki G, Diamond DM, Frackowiak R, Giedd J, Girault J-A, Weinberger D (2007) How can drug discovery for psychiatric disorders be improved? Nat Rev Drug Discov 6(3):189–201. doi:10.1038/nrd2217

    Article  CAS  Google Scholar 

  • Ahmad F, Richardson MK (2013) Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity. Behav Process 92:88–98. doi:10.1016/j.beproc.2012.10.014

    Article  Google Scholar 

  • Ali S, Champagne DL, Alia A, Richardson MK (2011) Large-scale analysis of acute ethanol exposure in zebrafish development: a critical time window and resilience. PLoS ONE 6(5):e20037. doi:10.1371/journal.pone.0020037

    Article  CAS  Google Scholar 

  • Ali S, Champagne DL, Richardson MK (2012) Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds. Behav Brain Res 228(2):272–283. doi:10.1016/j.bbr.2011.11.020

    Article  CAS  Google Scholar 

  • Arlien-Søborg, P., & Simonsen, L. (2011). Chemical neurotoxic agents. In: Encyclopedia of occupational health and safety. International Labor Organization, Geneva. Retrieved from http://www.ilo.org/oshenc/part-i/nervous-system/item/289-chemical-neurotoxic-agents

  • Bal-Price AK, Suñol C, Weiss DG, van Vliet E, Westerink RHS, Costa LG (2008) Application of in vitro neurotoxicity testing for regulatory purposes: symposium III summary and research needs. Neurotoxicology 29(3):520–531. doi:10.1016/j.neuro.2008.02.008

    Article  Google Scholar 

  • Bal-Price AK, Hogberg HT, Buzanska L, Coecke S (2010) Relevance of in vitro neurotoxicity testing for regulatory requirements: challenges to be considered. Neurotoxicol Teratol 32(1):36–41. doi:10.1016/j.ntt.2008.12.003

    Article  CAS  Google Scholar 

  • Baraban SC, Taylor MR, Castro PA, Baier H (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3):759–768. doi:10.1016/j.neuroscience.2004.11.031

    Article  CAS  Google Scholar 

  • Baxendale S, Holdsworth CJ, Meza Santoscoy PL, Harrison MRM, Fox J, Parkin CA, Cunliffe VT (2012) Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Models Mech 5(6):773–784. doi:10.1242/dmm.010090

    Article  CAS  Google Scholar 

  • Beker van Woudenberg A, Wolterbeek A, Te Brake L, Snel C, Menke A, Rubingh C, Kroese D (2013) A category approach to predicting the developmental (neuro) toxicity of organotin compounds: the value of the zebrafish (Danio rerio) embryotoxicity test (ZET). Reprod Toxicol (Elmsford NY) 41:35–44. doi:10.1016/j.reprotox.2013.06.067

    Article  CAS  Google Scholar 

  • Bhandiwad AA, Zeddies DG, Raible DW, Rubel EW, Sisneros JA (2013) Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol 216(Pt 18):3504–3513. doi:10.1242/jeb.087635

    Article  Google Scholar 

  • Blader P, Strähle U (2000) Zebrafish developmental genetics and central nervous system development. Hum Mol Genet 9(6):945–951

    Article  CAS  Google Scholar 

  • Bopp, S. K., Minuzzo, M., & Lettieri, T. (2006). The zebrafish (Danio rerio): an emerging model organism in the environmental field

  • Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Howe DG, Westerfield M (2011) ZFIN: enhancements and updates to the zebrafish model organism database. Nucleic Acids Res 39(Database issue):D822–D829. doi:10.1093/nar/gkq1077

    Article  CAS  Google Scholar 

  • Brockerhoff, S. E., Hurleyt, J. B., Janssen-bienholdt, U., Neuhauss, S. C. F., Driever, W., & Dowling, J. E. (1995). A behavioral screen for isolating zebrafish mutants with visual system defects, 92(November), 10545–10549

  • Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci Off J Soc Neurosci 27(18):4984–4994. doi:10.1523/JNEUROSCI. 0615-07.2007

    Article  CAS  Google Scholar 

  • Colwill, R. M., & Creton, R. (2012). Imaging escape and avoidance behavior in zebrafish larvae, 22(1), 63–73. doi:10.1515/RNS.2011.008.Imaging

  • Cowden J, Padnos B, Hunter D, MacPhail R, Jensen K, Padilla S (2012) Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos. Reprod Toxicol (Elmsford NY) 33(2):165–173. doi:10.1016/j.reprotox.2011.11.111

    Article  CAS  Google Scholar 

  • Crofton KM, Mundy WR, Lein PJ, Bal-Price A, Coecke S, Seiler AEM, Goldberg A (2011) Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals. Altex 28(1):9–15, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21311847

    Article  Google Scholar 

  • De Esch C, Slieker R, Wolterbeek A, Woutersen R, de Groot D (2012a) Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotoxicol Teratol 34(6):545–553. doi:10.1016/j.ntt.2012.08.006

    Article  Google Scholar 

  • De Esch C, van der Linde H, Slieker R, Willemsen R, Wolterbeek A, Woutersen R, De Groot D (2012b) Locomotor activity assay in zebrafish larvae: influence of age, strain and ethanol. Neurotoxicol Teratol 34(4):425–433. doi:10.1016/j.ntt.2012.03.002

    Article  Google Scholar 

  • Downes GB, Granato M (2004) Acetylcholinesterase function is dispensable for sensory neurite growth but is critical for neuromuscular synapse stability. Dev Biol 270(1):232–245. doi:10.1016/j.ydbio.2004.02.027

    Article  CAS  Google Scholar 

  • Ellis LD, Soanes KH (2012) A larval zebrafish model of bipolar disorder as a screening platform for neuro-therapeutics. Behav Brain Res 233(2):450–457. doi:10.1016/j.bbr.2012.05.043

    Article  Google Scholar 

  • Ellis LD, Seibert J, Soanes KH (2012) Distinct models of induced hyperactivity in zebrafish larvae. Brain Res 1449:46–59. doi:10.1016/j.brainres.2012.02.022

    Article  CAS  Google Scholar 

  • Fleming A, Diekmann H, Goldsmith P (2013) Functional characterisation of the maturation of the blood–brain barrier in larval zebrafish. PLoS ONE 8(10):e77548. doi:10.1371/journal.pone.0077548

    Article  CAS  Google Scholar 

  • Giordano, G., & Costa, L. G. (2012). Developmental neurotoxicity: some old and new issues. ISRN toxicology, 2012, 814795. doi:10.5402/2012/814795

  • Granato M, van Eeden FJ, Schach U, Trowe T, Brand M, Furutani-Seiki M, Nüsslein-Volhard C (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Dev (Camb Engl) 123:399–413, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9007258

    CAS  Google Scholar 

  • Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368(9553):2167–2178. doi:10.1016/S0140-6736(06)69665-7

    Article  CAS  Google Scholar 

  • Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13(3):330–338. doi:10.1016/S1474-4422(13)70278-3

    Article  CAS  Google Scholar 

  • Hurd MW, Cahill GM (2002) Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish. J Biol Rhythm 17(4):307–314. doi:10.1177/074873002129002618

    Article  Google Scholar 

  • Ikeda H, Delargy AH, Yokogawa T, Urban JM, Burgess HA, Ono F (2013) Intrinsic properties of larval zebrafish neurons in ethanol. PLoS ONE 8(5):e63318. doi:10.1371/journal.pone.0063318

    Article  CAS  Google Scholar 

  • Ingebretson JJ, Masino MA (2013) Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies. Front Neural Circ 7(June):109. doi:10.3389/fncir.2013.00109

    Google Scholar 

  • Irons TD, MacPhail RC, Hunter DL, Padilla S (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32(1):84–90. doi:10.1016/j.ntt.2009.04.066

    Article  CAS  Google Scholar 

  • Irons TD, Kelly PE, Hunter DL, Macphail RC, Padilla S (2013) Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish. Pharmacol Biochem Behav 103(4):792–813. doi:10.1016/j.pbb.2012.12.010

    Article  CAS  Google Scholar 

  • Jacobson SM, Birkholz DA, McNamara ML, Bharate SB, George KM (2010) Subacute developmental exposure of zebrafish to the organophosphate pesticide metabolite, chlorpyrifos-oxon, results in defects in Rohon-Beard sensory neuron development. Aquat Toxicol (Amst Neth) 100(1):101–111. doi:10.1016/j.aquatox.2010.07.015

    Article  CAS  Google Scholar 

  • Klüver N, Yang L, Busch W, Scheffler K, Renner P, Strähle U, Scholz S (2011) Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression. PLoS ONE 6(12):e29063. doi:10.1371/journal.pone.0029063

    Article  Google Scholar 

  • Kokel D, Bryan J, Laggner C, White R, Cheung JCY, Mateus R, Haggarty SJ (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6(3):231–237. doi:10.1038/nchembio.307

    Article  CAS  Google Scholar 

  • Kokel D, Dunn TW, Ahrens MB, Alshut R, Cheung CYJ, Saint-Amant L, Peterson RT (2013) Identification of nonvisual photomotor response cells in the vertebrate hindbrain. J Neurosci Off J Soc Neurosci 33(9):3834–3843. doi:10.1523/JNEUROSCI. 3689-12.2013

    Article  CAS  Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comparative biochemistry and physiology. Toxicol & Pharmacol: CBP 149(2):196–209. doi:10.1016/j.cbpc.2008.11.006

    CAS  Google Scholar 

  • Lange M, Neuzeret F, Fabreges B, Froc C, Bedu S, Bally-Cuif L, Norton WHJ (2013) Inter-individual and inter-strain variations in zebrafish locomotor ontogeny. PLoS ONE 8(8):e70172. doi:10.1371/journal.pone.0070172

    Article  CAS  Google Scholar 

  • Lyall K, Schmidt RJ, Hertz-Picciotto I (2014) Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol 43(2):443–464. doi:10.1093/ije/dyt282

    Article  Google Scholar 

  • Miller G (2010) Is pharma running out of brainy ideas? Science 329(July 2010):502–504, Online

    Article  CAS  Google Scholar 

  • O’Neale A, Ellis J, Creton R, Colwill RM (2014) Single stimulus learning in zebrafish larvae. Neurobiol Learn Mem 108:145–154. doi:10.1016/j.nlm.2013.08.016

  • Padilla S, Hunter DL, Padnos B, Frady S, MacPhail RC (2011) Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotoxicol Teratol 33(6):624–630. doi:10.1016/j.ntt.2011.08.005

    Article  CAS  Google Scholar 

  • Padilla S, Corum D, Padnos B, Hunter DL, Beam A, Houck KA, Reif DM (2012) Zebrafish developmental screening of the ToxCast™ Phase I chemical library. Reprod Toxicol (Elmsford NY) 33(2):174–187. doi:10.1016/j.reprotox.2011.10.018

    Article  CAS  Google Scholar 

  • Puttonen HA, Sundvik M, Rozov S, Chen Y-C, Panula P (2013) Acute ethanol treatment upregulates th1, th2, and hdc in larval zebrafish in stable networks. Front Neural Circ 7(May):102. doi:10.3389/fncir.2013.00102

    CAS  Google Scholar 

  • Roberts AC, Bill BR, Glanzman DL (2013) Learning and memory in zebrafish larvae. Front Neural Circ 7(August):126. doi:10.3389/fncir.2013.00126

    Google Scholar 

  • Rudén C, Hansson SO (2010) Registration, Evaluation, and Authorization of Chemicals (REACH) is but the first step-how far will it take us? Six further steps to improve the European chemicals legislation. Environ Health Perspect 118(1):6–10. doi:10.1289/ehp.0901157

    Google Scholar 

  • Schapira AHV (2010) Complex I: inhibitors, inhibition and neurodegeneration. Exp Neurol 224(2):331–335. doi:10.1016/j.expneurol.2010.03.028

    Article  CAS  Google Scholar 

  • Selderslaghs IWT, Hooyberghs J, De Coen W, Witters HE (2010) Locomotor activity in zebrafish embryos: a new method to assess developmental neurotoxicity. Neurotoxicol Teratol 32(4):460–471. doi:10.1016/j.ntt.2010.03.002

    Article  CAS  Google Scholar 

  • Spulber S, Kilian P, Wan Ibrahim WN, Onishchenko N, Ulhaq M, Norrgren L, Ceccatelli S (2014) PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae. PLoS ONE 9(4):e94227. doi:10.1371/journal.pone.0094227

    Article  Google Scholar 

  • Tierney KB (2011) Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim Biophys Acta 1812(3):381–389. doi:10.1016/j.bbadis.2010.10.011

    Article  CAS  Google Scholar 

  • Ton C, Lin Y, Willett C (2006) Zebrafish as a model for developmental neurotoxicity testing. Birth Defects Res Part A Clin Mol Teratol 76(7):553–567. doi:10.1002/bdra.20281

    Article  CAS  Google Scholar 

  • Walker CH (2003) Neurotoxic pesticides and behavioural effects upon birds. Ecotoxicol (Lond Engl) 12(1–4):307–316

    Article  CAS  Google Scholar 

  • Yang D, Lauridsen H, Buels K, Chi L-H, La Du J, Bruun DA, Lein PJ (2011) Chlorpyrifos-oxon disrupts zebrafish axonal growth and motor behavior. Toxicol Sci Off J Soc Toxicol 121(1):146–159. doi:10.1093/toxsci/kfr028

    Article  CAS  Google Scholar 

  • Yozzo KL, McGee SP, Volz DC (2013) Adverse outcome pathways during zebrafish embryogenesis: a case study with paraoxon. Aquat Toxicol (Amst Neth) 126:346–354. doi:10.1016/j.aquatox.2012.09.008

    Article  CAS  Google Scholar 

  • Zellner D, Padnos B, Hunter DL, MacPhail RC, Padilla S (2011) Rearing conditions differentially affect the locomotor behavior of larval zebrafish, but not their response to valproate-induced developmental neurotoxicity. Neurotoxicol Teratol 33(6):674–679. doi:10.1016/j.ntt.2011.06.007

    Article  CAS  Google Scholar 

  • Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4(1):35–44. doi:10.1038/nrd1606

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the European Commission for funding this project (FP7 DENAMIC no. 282957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Legradi.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legradi, J., el Abdellaoui, N., van Pomeren, M. et al. Comparability of behavioural assays using zebrafish larvae to assess neurotoxicity. Environ Sci Pollut Res 22, 16277–16289 (2015). https://doi.org/10.1007/s11356-014-3805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3805-8

Keywords

Navigation