Skip to main content

Zebrafish as a Tool to Assess Developmental Neurotoxicity

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 145))

Abstract

The zebrafish (Danio rerio) is an emerging biological model system in toxicological studies. The zebrafish is used to fill the gap between various in vitro and mammalian models currently being used to identify mechanisms of developmental neurotoxicity. The high-throughput characteristics that contribute to the strength of this small animal model combined with novel and/or standardized high-throughput technology can be used by researchers to conduct a robust volume of developmental embryonic and larval neurotoxicity assays. Using analytical toxicological methods, dose-response-time relationships can be established for comparison to other research animal model systems and translation to humans. Toxicogenomic and targeted molecular evaluations of xenobiotics can be used to identify pathways of toxicity and linked with phenotypic and behavioral insults to define mechanisms of developmental neurotoxicity using wild-type or transgenic zebrafish. This chapter describes analytical approaches for examining toxicokinetics of xenobiotics in the developing zebrafish, imaging techniques being used to identify phenotypic neurological abnormalities, behavioral assays in embryonic and larval zebrafish, and targeted and -omic approaches to identify molecular targets and pathways of neurotoxicity for an integrated approach to investigate developmental neurotoxicity using the zebrafish model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mbughuni MM, Jannetto PJ, Langman LJ (2016) Mass spectrometry applications for toxicology. eJIFCC 27(4):272–287

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Giordano G, Costa LG (2012) Developmental neurotoxicity: some old and new issues. ISRN Toxicol 2012, Article ID 814795, 12 pages.

    Google Scholar 

  3. Horzmann KA, Freeman JL (2018) Making waves: new developments in toxicology with the zebrafish. Toxicol Sci 163(1):5–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res 15(5):394–404

    Article  CAS  Google Scholar 

  5. Howe K et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Selderslaghs IWT, Van Rompay AR, De Coen W, Witters HE (2009) Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod Toxicol 28(3):308–320

    Article  CAS  PubMed  Google Scholar 

  7. Müller F, Blader P, Strähle U (2002) Search for enhancers: teleost models in comparative genomic and transgenic analysis of cis regulatory elements. BioEssays 24(6):564–572

    Article  PubMed  CAS  Google Scholar 

  8. Kikuta H et al (2007) Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res 17(5):545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCollum CW, Ducharme NA, Bondesson M, Gustafsson J-A (2011) Developmental toxicity screening in zebrafish. Birth Defects Res Part C Embryo Today Rev 93(2):67–114

    Article  CAS  Google Scholar 

  10. Wullimann MF, Mueller T (2004) Erratum: Teleostean and mammalian forebrains contrasted: evidence from genes to behavior. (Journal of Comparative Neurology (2004) 475 (143–162)). J Comp Neurol 478(4):427–428

    Article  Google Scholar 

  11. Wullimann MF (2009) Secondary neurogenesis and telencephalic organization in zebrafish and mice: a brief review. Integr Zool 4(1):123–133

    Article  PubMed  Google Scholar 

  12. Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35(2):63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee J, Freeman JL (2014) Zebrafish as a model for investigating developmental lead (Pb) neurotoxicity as a risk factor in adult neurodegenerative disease: a mini-review. Neurotoxicology 43:57–64

    Article  CAS  PubMed  Google Scholar 

  14. Rink E, Rink E, Wullimann MF, Wullimann MF (2002) Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Dev Brain Res 137:89–100

    Article  CAS  Google Scholar 

  15. Mueller T, Wullimann MF (2016) Atlas of early Zebrafish brain development, 2nd edn. ELSEVIER B.V, San Diego

    Google Scholar 

  16. Wirbisky SE, Weber GJ, Lee JW, Cannon JR, Freeman JL (2014) Novel dose-dependent alterations in excitatory GABA during embryonic development associated with lead (Pb) neurotoxicity. Toxicol Lett 229(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marchetti C (2003) Molecular targets of lead in brain neurotoxicity. Neurotox Res 5(3):221–235

    Article  PubMed  Google Scholar 

  18. Bearer CF (2001) L1 cell adhesion molecule signal cascades: targets for ethanol developmental neurotoxicity. Neurotoxicology 22:625–633

    Article  CAS  PubMed  Google Scholar 

  19. Chen T, Yu Y, Hu C, Schachner M (2016) L1.2, the zebrafish paralog of L1.1 and ortholog of the mammalian cell adhesion molecule L1 contributes to spinal cord regeneration in adult zebrafish. Restor Neurol Neurosci 34(2):325–335

    CAS  PubMed  Google Scholar 

  20. Hamadeh HK, Afshari CA (2004) Toxicogenomics: principles and applications. Wiley-Liss Hoboken, NJ

    Google Scholar 

  21. Westerfield M (2007) THE Zebrafish book a guide for the laboratory use of Zebrafish Danio* (Brachydanio) Rerio, 5th Edition (2007): Monte Westerfield: Amazon.com: Books, 5th edn. University of Oregon Press, Eugene

    Google Scholar 

  22. Sessa AK, White R, Houvras Y, Burke C, Pugach E, Baker B, Gilbert R, Thomas Look A, Zon LI (2008) The effect of a depth gradient on the mating behavior, oviposition site preference, and embryo production in the zebrafish, Danio rerio. Zebrafish 5(4):335–339

    Google Scholar 

  23. Wilson CA, Bacon JR, Cresser MS, Davidson DA (2006) Lead isotope ratios as a means of sourcing anthropogenic lead in archaeological soils: a pilot study of an abandoned SHETLAND croft*. Archaeometry 48(3):501–509

    Article  CAS  Google Scholar 

  24. Nelms SM (ed) (2005) Inductively coupled plasma mass spectrometry handbook. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  25. al-Saleh IA, Fellows C, Delves T, Taylor A (1993) Identification of sources of lead exposure among children in Arar, Saudi Arabia. Ann Clin Biochem 30(Pt 2):142–145

    Article  PubMed  Google Scholar 

  26. Heitland P, Köster HD (2006) Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta 365(1–2):310–318

    Article  CAS  PubMed  Google Scholar 

  27. Heitland P, Köster HD (2004) Fast, simple and reliable routine determination of 23 elements in urine by ICP-MS. J Anal At Spectrom 19(12):1552–1558

    Article  CAS  Google Scholar 

  28. Gonzalez P, Baudrimont M, Boudou A, Bourdineaud J-P (2006) Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish (Danio rerio). Biometals 19(3):225–235

    Article  CAS  PubMed  Google Scholar 

  29. Ettre LS, Sakodynskii KI (1993) Tswett, M. S. and the discovery of chromatography II: completion of the development of chromatography (1903–1910). Chromatographia 35(5–6):329–338

    Article  CAS  Google Scholar 

  30. Wen B, Zhu M (2015) Applications of mass spectrometry in drug metabolism: 50 years of progress. Drug Metab Rev 47(1):71–87

    Article  CAS  PubMed  Google Scholar 

  31. Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2(2):140–150

    Article  CAS  PubMed  Google Scholar 

  32. Vogeser M (2003) Liquid chromatography-tandem mass spectrometry – application in the clinical laboratory. Clin Chem Lab Med 41(2):117–126

    CAS  PubMed  Google Scholar 

  33. Lynch K, Breaud A (2010) Performance evaluation of three liquid chromatography mass spectrometry methods for broad spectrum drug screening. Clin Chim Acta 411:1474–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grebe SKG, Singh RJ (2011) LC-MS/MS in the clinical laboratory – where to from here? Clin Biochem Rev 32(1):5–31

    PubMed  PubMed Central  Google Scholar 

  35. Maurer HH, Meyer MR (2016) High-resolution mass spectrometry in toxicology: current status and future perspectives. Arch Toxicol 90(9):2161–2172

    Article  CAS  PubMed  Google Scholar 

  36. Chauhan A (2014) GC-MS technique and its analytical applications in science and technology. J Anal Bioanal Tech 5:6

    Google Scholar 

  37. Viette V, Hochstrasser D, Fathi M (2012) LC-MS (/MS) in clinical toxicology screening methods. Chim Int J Chem 66(5):339–342

    Article  CAS  Google Scholar 

  38. Garg U, Zhang YV (2016) Clinical applications of mass spectrometry in drug analysis, methods and protocols, vol 1383. Humana Press, New York

    Book  Google Scholar 

  39. Nair H, Woo F, Hoofnagle AN, Baird GS (2013) Clinical validation of a highly sensitive GC-MS platform for routine urine drug screening and real-time reporting of up to 212 drugs. J Toxicol 2013:329407.

    Google Scholar 

  40. Caldwell GW, Yan Z, Tang W, Dasgupta M, Hasting B (2009) Drug, ADME optimization and toxicity assessment in early- and late-phase discovery. Curr Top Med Chem 9(11):965–980

    Article  CAS  PubMed  Google Scholar 

  41. Yuan C, Chen D, Wang S (2015) Drug confirmation by mass spectrometry: identification criteria and complicating factors. Clin Chim Acta 438:119–125

    Article  CAS  PubMed  Google Scholar 

  42. Collery RF, Veth KN, Dubis AM, Carroll J, Link BA (2014) Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and Emmetropization. PLoS One 9(10):e110699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kamei M, Weinstein BM (2005) Long-term time-lapse fluorescence imaging of developing zebrafish. Zebrafish 2(2):113–123

    Article  PubMed  Google Scholar 

  44. Higashijima S-I (2008) Transgenic zebrafish expressing fluorescent proteins in central nervous system neurons. Develop Growth Differ 50:407–413

    Article  CAS  Google Scholar 

  45. Liu L et al (2017) High-throughput imaging of zebrafish embryos using a linear-CCD-based flow imaging system. Biomed Opt Express 8(12):5651–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Langenberg T, Brand M, Cooper MS (2003) Imaging brain development and organogenesis in zebrafish using immobilized embryonic explants. Dev Dyn 228(3):464–474

    Article  CAS  PubMed  Google Scholar 

  47. Renaud O, Herbomel P, Kissa K (2011) Studying cell behavior in whole zebrafish embryos by confocal live imaging: application to hematopoietic stem cells. Nat Protoc 6(12):1897–1904

    Article  CAS  PubMed  Google Scholar 

  48. Schier AF et al (1996) Mutations affecting the development of the embryonic zebrafish brain. Development 123:165–178

    Article  CAS  PubMed  Google Scholar 

  49. Saverino C, Gerlai R (2008) The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191(1):77–87

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tierney KB (2011) Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim Biophys Acta Mol basis Dis 1812(3):381–389

    Article  CAS  Google Scholar 

  51. Kalueff AV (2017) Illustrated zebrafish neurobehavioral glossary. In: The rights and wrongs of zebrafish: behavioral phenotyping of zebrafish. Springer International Publishing, Cham, pp 291–317

    Chapter  Google Scholar 

  52. Kalueff AV et al (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10(1):70–86

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ahmad F, Noldus LPJJ, Tegelenbosch RAJ, Richardson MK (2012) Zebrafish embryos and larvae in behavioural assays. Behaviour 149(10–12):1241–1281

    Google Scholar 

  54. Reif DM, Truong L, Mandrell D, Marvel S, Zhang G, Tanguay RL (2016) High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch Toxicol 90(6):1459–1470

    Article  CAS  PubMed  Google Scholar 

  55. Kokel D et al (2013) Identification of nonvisual photomotor response cells in the vertebrate hindbrain. J Neurosci 33(9):3834–3843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD, Padilla S (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30(1):52–58

    Article  CAS  PubMed  Google Scholar 

  57. MacPhail RC, Hunter DL, Irons TD, Padilla S (2011) Locomotion and behavioral toxicity in larval zebrafish: background, methods, and data. In: Zebrafish. Wiley, Hoboken, pp 151–164

    Chapter  Google Scholar 

  58. Chou C-T, Hsiao Y-C, Ko F-C, Cheng J-O, Cheng Y-M, Chen T-H (2010) Chronic exposure of 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) alters locomotion behavior in juvenile zebrafish (Danio rerio). Aquat Toxicol 98(4):388–395

    Article  CAS  PubMed  Google Scholar 

  59. Macaulay LJ, Bailey JM, Levin ED, Stapleton HM (2015) Persisting effects of a PBDE metabolite, 6-OH-BDE-47, on larval and juvenile zebrafish swimming behavior. Neurotoxicol Teratol 52(Pt B):119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tilton FA, Tilton SC, Bammler TK, Beyer RP, Stapleton PL, Scholz NL, Gallagher EP (2011) Transcriptional impact of organophosphate and metal mixtures on olfaction: copper dominates the chlorpyrifos-induced response in adult zebrafish. Aquat Toxicol 102:205–215

    Google Scholar 

  61. Ling XP, Lu YH, Huang HQ (2012) Differential protein profile in zebrafish (Danio rerio) brain under the joint exposure of methyl parathion and cadmium. Environ Sci Pollut Res 19(9):3925–3941

    Google Scholar 

  62. Green AJ, Planchart A (2018) The neurological toxicity of heavy metals: A fish perspective. Comp Biochem Physiol C Toxicol Pharmacol 208:12–19

    Google Scholar 

  63. Schwanhäusser B et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Article  CAS  PubMed  Google Scholar 

  64. Peterson SM, Freeman JL (2009) RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. J Vis Exp 30:1–5

    Google Scholar 

  65. Wild R et al (2017) Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization. Nat Commun 8:13991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bustin SA, Wittwer CT (2017) MIQE: a step toward more robust and reproducible quantitative PCR. Clin Chem 63(9):1537–1538

    Article  CAS  PubMed  Google Scholar 

  67. Horzmann KA, Freeman JL (2017) Toxicogenomic evaluation using the zebrafish model system. In: Encyclopedia of analytical chemistry. Wiley, Chichester, pp 1–19

    Google Scholar 

  68. Mantione KJ et al (2014) Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq. Med Sci Monit Basic Res 20:138–142

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Trapnell C et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Drewe P et al (2013) Accurate detection of differential RNA processing. Nucleic Acids Res 41(10):5189–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang Z, Wang W (2014) RNA-skim: a rapid method for RNA-Seq quantification at transcript level. Bioinformatics 30(12):i283–i292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Freeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kiper, K.G., Freeman, J.L. (2019). Zebrafish as a Tool to Assess Developmental Neurotoxicity. In: Aschner, M., Costa, L. (eds) Cell Culture Techniques. Neuromethods, vol 145. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9228-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9228-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9227-0

  • Online ISBN: 978-1-4939-9228-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics