Skip to main content
Log in

Mixed sulfur–iron particles packed reactor for simultaneous advanced removal of nitrogen and phosphorus from secondary effluent

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A mixed sulfur–iron particles packed reactor (SFe reactor) was developed to simultaneously remove total nitrogen (TN) and total phosphorus (TP) of the secondary effluent from municipal wastewater treatment plants. Low effluent TN (<1.5 mg/L) and TP (<0.3 mg/L) concentrations were simultaneously obtained, and high TN removal rate [1.03 g N/(L·d)] and TP removal rate [0.29 g P/(L·d)] were achieved at the hydraulic retention time (HRT) of 0.13 h. Kinetic models describing denitrification were experimentally obtained, which predicted a higher denitrification rate [1.98 g N/(L·d)] of SFe reactor than that [1.58 g N/(L·d)] of sulfur alone packed reactor due to the mutual enhancement between sulfur-based autotrophic denitrification and iron-based chemical denitrification. A high TP removal obtained in SFe reactor was attributed to chemical precipitation of iron particles. Microbial community analysis based on 16S rRNA revealed that autotrophic denitrifying bacteria Thiobacillus and Sulfuricella were the dominant genus, indicating that autotrophic denitrification played important role in nitrate removal. These results indicate that sulfur and iron particles can be packed together in a single reactor to effectively remove nitrate and phosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed Z, Kim SM, Kim IS, Bum MS, Chae KJ, Joo JH, Ok YS, Oh SE (2012) Nitrification and denitrification using biofilters packed with sulfur and limestone at a pilot-scale municipal wastewater treatment plant. Environ Technol 11:1271–1278

    Article  Google Scholar 

  • Almeelbi T, Bezbaruah A (2012) Aqueous phosphate removal using nanoscale zero-valent iron. J Nanoparticle Res 14:900–914

    Article  Google Scholar 

  • Arias M, Da Silva-Carballal J, Garcia-Rio L, Mejuto J, Nunez A (2006) Retention of phosphorus by iron and aluminum-oxides-coated quartz particles. J Colloid Interface Sci 295:65–70

    Article  CAS  Google Scholar 

  • Barberio C, Pagliai L, Cavalieri D, Fani R (2001) Biodiversity and horizontal gene transfer in culturable bacteria isolated from activated sludge enriched in nonylphenol ethoxylates. Res Microbiol 152:105–112

    Article  CAS  Google Scholar 

  • Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488

    Article  CAS  Google Scholar 

  • Cai J, Zheng P, Mahmood Q (2008) Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresour Technol 99:5520–5527

    Article  CAS  Google Scholar 

  • Cheng SF, Huang CY, Liu JY (2006) Study of different methods for enhancing the nitrate removal efficiency of a zero-valent metal process. Water Sci Technol 53:81–87

    Article  CAS  Google Scholar 

  • Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311

    Article  CAS  Google Scholar 

  • Fahrbach M, Kuever J, Meinke R, Kampfer P, Hollender J (2006) Denitratisoma oestradiolicum gen. nov., sp. nov., a 17beta-oestradiol-degrading, denitrifying Betaproteobacterium. Int J Syst Evol Microbiol 56:1547–1552

    Article  CAS  Google Scholar 

  • Flere JM, Zhang TC (1999) Nitrate removal with sulfur-limestone autotrophic denitrification processes. J Environ Eng 125:721–729

    Article  CAS  Google Scholar 

  • Fytianos K, Voudrias E, Raikos N (1998) Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron. Environ Pollut 101:123–130

    Article  CAS  Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907

    Article  CAS  Google Scholar 

  • Guo CH, Stabnikov V, Ivanov V (2010) The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions. Bioresour Technol 101:3992–3999

    Article  CAS  Google Scholar 

  • Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38:2631–2642

    Article  CAS  Google Scholar 

  • Huang CP, Wang HW, Chiu PC (1998) Nitrate reduction by metallic iron. Water Res 8:2257–2264

    Article  Google Scholar 

  • Jing DL, Ni GW, Jia JL (2012) Performance analysis of anaerobic/anoxic/oxic (A/A/O) process municipal WWTPs. Adv Mater Res 461:478–481

    Article  Google Scholar 

  • Koenig A, Liu LH (2001) Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Res 35:1969–1978

    Article  CAS  Google Scholar 

  • Kojima H, Fukui M (2010) Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 60:2862–2866

    Article  CAS  Google Scholar 

  • Lau GN, Sharma KR, Chen GH, van Loosdrecht MCM (2006) Integration of sulphate reduction, autotrophic denitrification and nitrification to achieve low-cost excess sludge minimisation for Hong Kong sewage. Water Sci Technol 3:227–235

    Article  Google Scholar 

  • Lee KC, Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res 36:2040–2052

    Article  CAS  Google Scholar 

  • Lee JH, Park JJ, Seo KS, Choi GC, Lee TH (2013) Simultaneous autotrophic & heterotrophic denitrification by the injection of reformed spent sulfidic caustic (SSC) in a pilot-scale sewage treatment plant. Korean J Chem Eng 30:139–144

    Article  CAS  Google Scholar 

  • L'Haridon S, Miroshnichenko ML, Kostrikina NA, Tindall BJ, Spring S, Schumann P, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2006) Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 56:1047–1053

    Article  Google Scholar 

  • Luna-Velasco A, Sierra-Alvarez R, Castro B, Field JA (2010) Removal of nitrate and hexavalent uranium from groundwater by sequential treatment in bioreactors packed with elemental sulfur and zero-valent iron. Biotechnol Bioeng 107:933–942

    Article  CAS  Google Scholar 

  • Moon HS, Shin D, Nam K, Kim JY (2010) Distribution of the microbial community structure in sulfur-based autotrophic denitrification columns. J Environ Eng 136:481–486

    Article  CAS  Google Scholar 

  • Morse GK, Brett SW, Guy JA, Lester JN (1998) Review: phosphorus removal and recovery technologies. Sci Total Environ 212:69–81

    Article  CAS  Google Scholar 

  • Park JY, Yoo YJ (2009) Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose. Appl Microbiol Biotechnol 82:415–429

    Article  CAS  Google Scholar 

  • Ruan YJ, Luo GZ, Tan HX, Che X, Jiang Y, Sun DC (2009) Nitrate and phosphate removal in sulphur-coral stone autotrophic denitrification packed-bedreactors. Can J Civ Eng 36:923–931

    Article  CAS  Google Scholar 

  • Sahinkaya E, Kilic A (2014) Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction. Water Res 50:278–286

    Article  CAS  Google Scholar 

  • Sahinkaya E, Dursun N, Kilic A, Demirel S, Uyanik S, Cinar O (2011) Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production. Water Res 45:6661–6667

    Article  CAS  Google Scholar 

  • Seunghee C, Howard ML (2004) Nitrate reduction by zero-valent iron under different pH regimes. Appl Geochem 19:335–342

    Article  Google Scholar 

  • Shao MF, Zhang T, Fang HHP (2010) Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88:1027–1042

    Article  CAS  Google Scholar 

  • Shen TG, Shi HC, Shi HM, Jing H, Xiong HL (2011) Feedforward control for nitrogen removal in a pilot-scale anaerobic-anoxic-oxic plant for municipal wastewater treatment. Front Environ Sci Eng 5:130–139

    Article  CAS  Google Scholar 

  • Shen ZQ, Zhou YX, Hu J, Wang JL (2013) Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support. J Hazard Mater 250–251:431–438

    Article  Google Scholar 

  • Sierra-Alvarez R, Beristain-Cardoso R, Salazar M, Gomez J, Razo-Flores E, Field JA (2007) Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Res 41:1253–1262

    Article  CAS  Google Scholar 

  • Sikora LJ, Keeney DR (1976) Evaluation of a sulphur -Thiobacillus denitrificans nitrate removal system. J Environ Qual 5:298–303

    Article  CAS  Google Scholar 

  • Soares MIM (2002) Denitrification of groundwater with elemental sulfur. Water Res 36:1392–1395

    Article  CAS  Google Scholar 

  • Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F, Horikoshi K (2006) Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 56:1725–1733

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tanaka Y, Yatagai A, Masujima H, Waki M, Yokoyama H (2007) Autotrophic denitrification and chemical phosphate removal of agro-industrial wastewater by filtration with granular medium. Bioresour Technol 98:787–791

    Article  CAS  Google Scholar 

  • Tarlera S, Denner EB (2003) Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the beta-Proteobacteria. Int J Syst Evol Microbiol 53:1085–1091

    Article  CAS  Google Scholar 

  • Voordouw G (1995) The genus Desulfovibrio: the centennial. Appl Environ Microbiol 61:2813–2819

    CAS  Google Scholar 

  • Wang JH, Peng YZ, Chen YZ (2011) Advanced nitrogen and phosphorus removal in A2O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater. Front Environ Sci Eng 5:474–480

    Article  CAS  Google Scholar 

  • Wef AA (2005) Standard methods for the examination of water and wastewater, 1st edn. American Public Health Association, American Water Works Association, Water Environmental Federation, Washington

    Google Scholar 

  • Yamashita T, Yamamoto-Ikemoto R (2008) Phosphate removal and sulfate reduction in a denitrification reactor packed with iron and wood as electron donors. Water Sci Technol 58:1405–1413

    Article  CAS  Google Scholar 

  • Zeng H, Zhang TC (2005) Evaluation of kinetic parameters of sulphur-limestone autotrophic denitrification biofilm process. Water Res 39:4941–4952

    Article  CAS  Google Scholar 

  • Zhao YX, Zhang BG, Feng CP, Huang FY, Zhang P, Zhang ZY, Yang YN, Sugiura N (2012) Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment. Bioresour Technol 107:159–165

    Article  CAS  Google Scholar 

  • Zhou WL, Sun YJ, Wu BT, Zhang Y, Huang M, Miyanaga T, Zhang ZJ (2011) Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. J Environ Sci 23:1761–1769

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Science Fund for Creative Research Groups (no. 21221004), the Major Science and Technology Program for Water Pollution Control and Treatment (no. 2011ZX07317-002), and Program for Changjiang Scholars and Innovative Research Team in University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Liang or Xia Huang.

Additional information

Responsible editor: Bingcai Pan

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liang, P., Wu, Z. et al. Mixed sulfur–iron particles packed reactor for simultaneous advanced removal of nitrogen and phosphorus from secondary effluent. Environ Sci Pollut Res 22, 415–424 (2015). https://doi.org/10.1007/s11356-014-3370-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3370-1

Keywords

Navigation